Research frontiers in DFT and BIST

Stephen Sunter
Engineering Director, Mixed-signal DFT
Silicon Test Solutions

June 2011

stephen_sunter a t mentor . com
Introduction

- Evolution of DFT techniques for random logic and memory
 - Scan-path test access: adoption started ~1986; widely used now
 - Boundary scan: adoption started ~1993; widely used
 - Memory BIST: adoption started ~1996; widely used
 - At-speed → programmable → memory write-through
 - Scan compression: adoption started ~2001; increasing usage
 - 10X~100X compression → at-speed → controlled power
 - Logic BIST: adoption started ~2003; increasing usage
 - At-speed → async. multi-frequency → controlled power

- Evolution of DFT techniques for analog/mixed-signal/RF
 - Loopback, and analog bus – adoption started ~1975; widely used
 - BIST – ad hoc; minimal adoption

- System-on-chip test effort and costs: 70% mixed-signal
 - As reported by Infineon, Qualcomm (for cellphone ICs)
 - Need systematic DFT!
Outline

- 3D test problems, and DFT standards
 - Some details for 1149.4 and P1687
- Review of industry techniques for mixed-signal DFT/BIST
 - PLL
 - SerDes
 - DDR I/Os
 - Other I/Os
 - ADC/DAC
 - Analog
 - RF
- Conclusions
3D test problems

- Require known good die (KGD)
 - Final-test fault coverage at wafer-sort
 - Inductance+resistance of probe access

- Reduced access after packaging
 - Fewer pins per IC than single die packages
 - No visual access to each die for diagnosis

- More chip I/Os (TSVs)
 - Reduced area per I/O for test circuitry
 - Higher probability of faulty connections to other ICs

- Higher defectivity at package-level
 - Many ICs per package (with lower pre-package fault coverage)
 - TSV yield needs improvement
DFT standards for 3D applications

- Must test packaged IC via only 1149.x interface

- IEEE standards for testing chip I/Os and connections
 - 1149.1 (JTAG boundary scan) – 4 or 5 pins
 - Detect shorts/opens between connected I/Os, and control BIST
 - 1149.4 (analog boundary scan) – additional 2 or 4 pins
 - Apply currents and measure voltages at I/Os, and in core
 - 1149.6 (ACJTAG) – boundary scan for differential or AC interconnect
 - Apply TCK-rate square waves, and detect edge pulses
 - 1149.7 – reduced-pin 1149.1 test access ports
 - Also allows multiple TAPs to share same package pins

- IEEE standards for testing chip core
 - 1500 (embedded core test access) – scan wrappers & description
 - P1687 (IJTAG: Instrument JTAG) – access to test-instruments
 - P1838 (test access to 3D stacked ICs)

- Lots for digital; very little for analog
1149.4 standard mixed-signal (analog) test bus

- Overview presented to CMC May 16 by Heiko Ehrenberg
- IEEE issued in 2000, but updated in 2011 to include ABSDL
 - Analog boundary scan description language
 - Facilitates automated test generation
- Limitations, 4 solutions, more limitations
 - Maximum number of access-transistor diffusions per wire
 - DC leakage current before 100µA max reached \(\rightarrow \) <10 nodes is OK
 - AC coupling for HF signals, even in function mode \(\rightarrow \) good T switches
 - Capacitance limits bandwidth \(\rightarrow \) analog buffers
 - Maximum length of interconnect
 - Capacitance limits bandwidth; inductance limits SNR
 - Antenna effect/plasma-induced damage requires diffusions, capacitance
 - Solution: Multiple busses + analog multiplexer to AT1/AT2
 - Limitation: Wiring congestion if >200 nodes
 - Limitation: Still must traverse the whole IC
 - Limitation: Bus+switches+buffers limit bandwidth, SNR, linearity, offset
P1687 standard for on-chip instrument access

- Proposed IEEE standard
 - Being developed by >20 major companies
 - Standard digital access to on-chip test capabilities (instruments)

- Programmable length scan path access
 - Minimizes access time to any instrument

- Language that describes how to access any instrument
 - Allows automated retargeting of test patterns
 - Simplifies creation of test patterns
 - Facilitates creating tests that involve instruments on multiple ICs

Source: http://grouper.ieee.org/groups/1687/documentation.html
Analog/ mixed-signal DFT

- All DFT standards focus on digital
 - Except 1149.4, which hardly anyone uses
 - AMS test is growing to >70% of total test

- Overview of industry techniques for mixed-signal DFT
 - Focus on relevance to 3D
 - PLL
 - SerDes
 - DDR I/Os
 - General I/Os
 - ADC/DAC
 - Analog
 - RF

Key specifications
- DFT techniques
- BIST techniques
- Most common technique
- Emerging problems

Pie chart source: F. Poehl et al., “Production test challenges for highly integrated mobile phone SoCs - A case study”, Eur. Test Symp. 2010
PLL

- **Key specifications**
 - Jitter <5 ps rms
 - Duty cycle = 50% ±2%
 - Lock time <10 µs
 - Lock range = 100 MHz ~ 2 GHz

- **DFT techniques**
 - Connect divided-down clock to I/O pin to measure frequency, jitter
 - Connect analog bus to VCO control voltage to measure VCO range

- **BIST techniques**
 - Delay-line from ref. clock to sampling latch to measure jitter
 - Undersample with offset frequency to measure jitter, duty cycle
 - Count ref. clock cycles from forced loss-of-lock until lock regained

- **Most common technique**
 - No dedicated PLL test: simply wait lock time, then test core logic

- **Emerging problems**
 - All-digital PLLs – need prod’n test until proven in volume
 - PLL affects product-level specifications
Mentor’s Tessent PLLTest™

- Measures with calibrated 0.5ps~0.5ms resolution, in 10ms
- Jitter
 - Input, output
 - HF, LF
- Phase error
- Frequency, duty cycle
- Lock time, range
- Proven on customer silicon to <1 ps rms
- Sampling clock from another on-chip PLL, or off-chip PLL

US patent: 7158899
R. King & al., "Experiences with parametric BIST for production testing PLLs with picosecond precision", Int'T Test Conf., Nov. 2010

© 2011 Mentor Graphics Corp.
www.mentor.com
SerDes I/O

Key specifications (>4Gb/s)
- Random jitter <2 ps rms
- Duty cycle = 50% ±1%
- Amplitude >500 mV
- ISI <20 ps p-p

DFT techniques
- In receiver, add 2nd comparator with adjust. V_{REF} to monitor signals
- Add multiple on-chip loopback paths (serial, parallel, pre/post filter)

BIST techniques
- PRBS generate+compare, for loopback bit error rate test (BERT)
- Programmable phase-interpolator to sample anywhere in signal eye
- Offset ref. frequency for receiver to undersample input signal

Most common technique
- Loopback PRBS, and detect no bit errors in <500 ms

Emerging problems
- ISI from inter-chip wiring dominates – must test equalization
- ATE too expensive, impractical >5 Gb/s
Mentor’s Tessent SerdesTest™

- Measures with calibrated 0.1ps~0.1ms resolution, in 10ms
- Waveform
 - Rise time, slew rate
- Jitter
 - RJ_{RMS}, TJ_{RMS} (with LF rejection)
 - DJ_{p-p} (DCD, ISI)
- Jitter tolerance
 - Equalization
 - Sampling instant (mean, variation)
 - BER
- Proven on customer silicon >10 Gb/s, >50 lanes, <1 ps rms
DDR I/O

- **Key specifications** (>800 Mb/s per pin)
 - Crosstalk <50 ps
 - Duty cycle = 50% ±1%
 - Slew rate ≈ 1V/ns
 - Skew <20 ps across 8 pins

- **DFT techniques**
 - Selectable DLL outputs to sample multiple time points in DQ signal

- **BIST techniques**
 - Pseudo-random word or 1010 generate+compare, for loopback
 - Delay line in clock for DQ pin receivers
 - Offset ref. frequency for receiver or boundary scan to undersample

- **Most common technique**
 - Functional testing by ATE

- **Emerging problems**
 - ATE too expensive >1 Gb/s (hundreds of I/Os)
 - DDR used widely for chip-to-chip in 3D; at rapidly increasing speeds
General I/O

- **Key specifications** (<100 Mb/s per pin)
 - $I_{IL}, I_{IH} < 10 \mu A$
 - $V_{OL}/I_{OL}, V_{OH}/I_{OL} < 50 \Omega$
 - Slew rate limiting
 - Setup/hold time

- **DFT techniques**
 - Boundary scan
 - All I/Os bidirectional

- **BIST techniques**
 - Programmable pull-up/down; test that it overdrives leakage
 - Adjustable boundary scan update ➔ capture timing

- **Most common technique**
 - Bidirectional I/O + boundary scan

- **Emerging problems**
 - Testing I/O connections on increasingly dense boards
 - Boundary scan may be too intrusive when 1000s of TSVs
 - Testing TSV quality

© 2011 Mentor Graphics Corp.
www.mentor.com
Mentor’s IOTest™

- Measures delays
 - I/O wrap, rising, falling
 - SSN, rise/fall mismatch, pin-to-pin mismatch

- Unlimited time-resolution analysis (ns~ps)
 - Uses async clock from PLL for capture
 - No calibration or sensitivity to PVT
 - No changes to boundary scan cells
 - Suitable for all I/Os, including DDR

- Shifts out measured values, or pass/fail vs. per-pin limits
 - Measure any number of pins simultaneously

- RTL-synthesized, purely digital

US patents: 7453255, others pending
Sunter & Tilmann, "BIST of I/O circuit parameters via standard boundary scan", Int'l Test Conf., 2010

© 2011 Mentor Graphics Corp.
www.mentor.com
ADC/ DAC

- Key specifications
 - DNL, INL <1 LSB
 - Aperture jitter <1 LSB equiv. (<2 ps rms)
 - SFDR >6 dB/bit
 - SNR >5 dB/bit

- DFT techniques
 - Scan access to digital; analog bus access to analog
 - Loopback, with offset voltage injection

- BIST techniques
 - On-chip linear ramp generation (~10 bits linearity)
 - Use DSP to perform FFT

- Most common technique
 - Functional testing by ATE

- Emerging problems
 - Embedded flash & large RAM >1 minute test – need multi-site test
 - Too many converters for ATE (10~100), especially if multi-site

Random analog

- **Key specifications**
 - Slew rate
 - Overshoot
 - PSRR
 - Gain
 - DC voltage
 - etc.

- **DFT techniques**
 - Scan access to digital; analog bus (or multiplexer) access to analog
 - Ad hoc

- **BIST techniques**
 - Ad hoc

- **Most common technique**
 - Functional testing by ATE, via analog bus

- **Emerging problems**
 - Too many functions for ad hoc approach; unpredictable TTM
 - Too little reuse of solutions; no standards
 - Insufficient engineers with analog test skills

F. Poehl et al., "Production test challenges for highly integrated mobile phone SoCs - A case study", Eur. Test Symp. 2010

© 2011 Mentor Graphics Corp.
www.mentor.com
Mentor’s Analog DFT/ BI ST (in development)

Three principles
- Unlimited voltage resolution: PWM, sigma-delta, oversampling
- Unlimited time resolution: undersampling periodic signals
- Unlimited number of nodes: 2 shift registers, 1687-like addressing

Four building blocks
- Shared digital stimulus generation + stimulus shift reg.
 - Clock-like waveform, PWM, sigma-delta, ...
- Simple D/A conversion
 - No need to test it, eg. RC
- Simple A/D conversion
 - No need to test it, eg. sampling comparator
- Response shift reg. + shared digital response analysis
 - Accumulator, timing analyser, DSP, ...

Serial digital version of 1149.4

RF analog

- Key specifications
 - Third-order intercept
 - Output power
 - Bandwidth, frequency
 - Noise

- DFT techniques
 - Analog bus to monitor V_{BIAS}
 - Analog bus to monitor power detector V_{DC}
 - Down-mixer

- BIST techniques
 - Loopback

- Most common technique
 - Functional testing by ATE

- Emerging problems
 - Crosstalk between radios of a chip
 - Crosstalk during multi-site test

Zhang et al., "Low Cost RF Receiver Parameter Measurement with On-chip Amplitude Detectors", VLSI Test Symp., 2008

© 2011 Mentor Graphics Corp.
www.mentor.com
Conclusions

■ 3D packaging introduces test problems
 — KGD, less access, more I/Os, interconnect yield

■ DFT standards mostly applicable to digital test
 — 1149.1, 1149.6, 1149.7, 1500, P1687
 — 1149.4 has many limitations due to its analog nature

■ Varying amounts of DFT/BIST adoption in industry
 — PLL
 — SerDes
 — DDR I/Os
 — General I/Os
 — ADC/DAC
 — Analog
 — RF

■ Mentor is the only company providing general DFT/BIST solutions