Tektronix

DPO70KSX Series

oscin

END USER TRAINING

26 MAR 2019

Agenda

Instrument Topics

- Front/Rear panel tour (inputs/outputs etc)
- Internal Architecture (whats inside from 10,000ft view)
- Basic GUI navigation
- How to Save: screen shots, settings, waveforms
- Synchronization with another scope
- Calibration
- Documentation
- Probe Best Practices

- Applications & Measurements
- Discuss/demo built-in scope measurements, histograms etc
- Use of the jitter tool (DPOJET) for eye diagram/jitter and signal integrity analysis
- Other application software of interest
- Your specific requests go here in terms of analysis or measurements – let us know

Real Time Architecture DP073304SX

K

Agenda

- Instrument Topics
 - Front/Rear panel tour (inputs/outputs etc)
 - Internal Architecture (whats inside from 10,000ft view)
 - Basic GUI navigation
 - How to Save: screen shots, settings, waveforms
 - Synchronization with another scope
 - Self- Calibration
 - Documentation
 - Probe Best Practices

- Applications & Measurements
- Discuss/demo built-in scope measurements, histograms etc
- Use of the jitter tool (DPOJET) for eye diagram/jitter and signal integrity analysis
- Other application software of interest
- Your specific requests go here in terms of analysis or measurements – let us know

- Instrument Self Calibration
 - In Utilities menu: Look for SPC "Signal Path Compensation"
 - Should be performed after 20 minutes warmup whenever a change in environmental conditions occur (move to a different lab or building)
 - No cables or fixtures required, simply disconnect signals from inputs
 - Enable the thermometer to indicate calibration status
 - displayed lower right corner GREEN YELLOW RED
 - There is no recommended or mandatory time interval to do this
 - If you see unusual behavior such as distorted waveforms this is a first step in verifying the instrument is performing correctly.

Calibration PROBES

- Probes have amplifiers, amplifiers have gain and therefore prove calibration is used to improve amplitude accuracy
- The calibration has no effect on risetime or freq response it is a procedure to calibrate the gain of the entire signal path (probe tip to ADC)
- Probes have an intelligent interface so the scope will remember if a specific serial numbered probe was calibrated on the channel in use.
- ** probes will be typically within 3-4% accuracy without calibration, the cal procedure improves this to 1.5-2%. Probes have a selfcheck and will usually report an error if they go out of tolerance.

Calibration PROBES

- Each probe family will have its own calibration (and deskew) fixture
- Follow the procedures found in the manual (and online help of the scope) to perform the probe calibration
- Calibrator Output (#3)
- Fast Rising Edge (#6)
 - Can be used for deskew

Documentation

- Folder on Desktop of instrument contains manuals for instruments, probes, applications.....
- <u>www.tek.com</u> also has Search function for manuals
- Context sensitive help available thru the scope user interface via "right-click"

MSO and DPO Instruments

Welcome to your Documentation Browser

Please choose a selection above. To check for updates to the documents on this CD, go to <u>www.tektronix.com/manuals</u>.

Copyright © Tektronix. All Rights Reserved. 076-0095-21 Version 10.9

Agenda

- Instrument Topics
 - Front/Rear panel tour (inputs/outputs etc)
 - Internal Architecture (whats inside from 10,000ft view)
 - Basic GUI navigation
 - How to Save: screen shots, settings, waveforms
 - Synchronization with another scope
 - Calibration
 - Documentation
 - Probe Best Practices

- Applications & Measurements
- Discuss/demo built-in scope measurements, histograms etc
- Use of the jitter tool (DPOJET) for eye diagram/jitter and signal integrity analysis
- Other application software of interest
- Your specific requests go here in terms of analysis or measurements – let us know

UltraSync Technology

SYNCHRONIZING MULTIPLE INSTRUMENTS

- The DPS73308SX = Qty 2 of DPO73304SX
- Each DPO73304SX is a standalone oscilloscope
- When combined via the UltraSync cable then the 2 units become integrated into 1 instrument.
 - Master Extension relationship
 - One user interface (master) controls all functions, waveform displays, remote control and triggering
- Cables installed when powered off and on powerup the units synchronize automatically
 - Color coded connections make hookup simple
 - Only tool needed is a SMA torque wrench

Scalable Performance

Compact 5 ¼" package with optional Auxiliary Front Panel and external display for user interface

Additional performance using multiple units

Configuration flexibility with precisely-synchronized timing

UltraSync High Performance Synchronization & Control bus

- 12.5 GHz Sample Clock Reference
- Coordinated Trigger
- High speed data path

UltraSync Multi-unit Synchronization

- Sample clock synchronization
 - 12.5 GHz system sample clock
- Trigger bus

12

- Tight channel-to-channel trigger synchronization among all units
- Control & Data Bus
 - UI, PI, DataStore in Master
 - PCIe Gen 2 x 4 lanes
 - Data processed in each Extension, aggregated in Master
- Configuration Manager software assists in correct connection

1 meter UltraSync cable

Multi-unit configurations

UltraSync High Performance Synchronization & Control Bus

"Master"

- 12.5 GHz Sample Clock Reference
- Coordinated Trigger
- High speed data path

"Extension"

Channel-to-Channel Skew Stability: 2 stack example

430fs pk-pk, 48.5fs_{RMS}, 65GHz sinewave

Matlab?

```
function ICT example
%clear all variables
delete (instrfind)
clear all
q = visa('ni', 'TCPIP::169.254.157.154::INSTR');
fopen(q);
fprintf(q, 'DATA:SOURCE CH1')
recordLength=query(g, 'HORIZONTAL:RECORDLENGTH?', '%s\n',
'%d');
fclose(q);
recordLength
 g.InputBufferSize = recordLength;
fopen(g);
fprintf(g, 'DATA:START 1');
fprintf(q,['DATA:STOP ' num2str(recordLength)]);
fprintf(q, 'DATA:WIDTH 1');
fprintf(q, 'DATA:ENC RPB');
fprintf(g, 'CURVE?');
data = binblockread(g, 'uint8');
ymult = str2num(query(q, 'WFMP:YMULT?'));
yoff = str2num(query(q, 'WFMP:YOFF?'));
xmult = str2num(query(q, 'WFMP:XINCR?'));
xoff = str2num(query(g, 'WFMP:PT OFF?'));
xzero = str2num(query(g, 'WFMP:XZERO?'));
ydata = ymult*(data - yoff);
xdata = xmult*((0:length(data)-1)-xoff)+xzero;
%Plot the scaled data.
 plot(xdata, ydata)
title('Scaled Waveform Data'); ylabel('Amplitude
(V) ');
 xlabel('Time (s)')
```