CMC

MICROSYSTEMS

Webinar Il

HPP-Heterogeneous Processing Platform
Programming Models, Performance and Power Profiling for the HPP

Yassine Hariri Hugh W. Pollitt-Smith
Senior Engineer, Platform Design Senior System Design Engineer
Hariri@cmc.ca Pollitt-smith@cmc.ca

2-12-2015

Agenda CMC

MICROSYSTEMS

 Overview
« emSYSCAN Development Systems Update
« HPP: Heterogeneous processing platform
- HPP GPU
— GPU Programming
 Libraries, OpenACC and Programming langages
— CUDA Development Using NVIDIA Nsight, Eclipse Edition
* Project Management, Edit, Build, Debug and Profile
— Power profiling using nvidia-smi
— Live demo
- HPP FPGA
— OpenCL for FPGA
— The AOCL FPGA Programming Flow
— Power and performance profiling
— Live demo
« HPP schedule
* Heterogeneous processing workshop

12/16/2015

EMSYSCAN DEVELOPMENT
SYSTEMS UPDATE

12/16/2015

Embedded Systems Canada ,(emSYSCAN)
$54M investment in Canada
37+ universities, 250+ faculty, 5 years

s National Desig

-

Microsystems
Rapid-Prototyping,
Characterization

and Integration Labs

4 Universities:

« UBC

* U Manitoba

* Queen’s

« Ecole Polytechnique

[

Multi-Technology Design

Environment
» System architecture exploration
 Multi-technology simulation
* Design of custom devices for
manufacturing

Development Systems

» System validation and
proof-of-concept demonstration

Installed Development
License Environment Hardware
Management B
Appliance

MICROSYSTEMS

M

MICROSYSTEMS

Real-Time
Embedded
Software Lab

University of
Waterloo

* Design, analysis,
debug of real-time
software on next-
generation processor
systems

Knowledge Repository

Common, Shared Platforms
Interconnected Community of Users

Centralized Management & Operations

License
Management
Server (LMS)

Development Systems for
Proof of Concept CMC

MICROSYSTEMS

2 ey [-
gﬁ < e

L

Images courtesy of National Instruments, Xilinx, BEECube,, NVIDIA

12/16/2015

National Research Platform: /4
Enriched Projects; Results Sooner CMC

MICROSYSTEMS

« Common set of programmable research platforms with
proof of concept features

* Pooled equipment timeshared among users
« Sharing of knowledge on equipment usage

« Adaptive over time in terms of equipment quantities and
equipment features

« Large community of users, institutions
* Leveraged industrial partners (e.g., STMicro.)

National project scope and sizeable outcomes
enabled by centralized project implementation and
management by CMC Microsystems

12/16/2015

Installation and usage /CMC

MICROSYSTEMS

« Shared access systems can be accessed at no charge but
require Designer level subscription

— Subscription provides access to support, tools, reference
designs, forums, workshops, travel, select/swap, training,
additional discounts

« Systems delivered on site, remote access
* Designated Development System coordinator(s) at each site

— Communicate institutional needs for purchase
specifications

— Local advocate, information source
— Encourage participation in National Project

12/16/2015

emSYSCAN Development /4
Systems delivered (Gen1) CMC

MICROSYSTEMS

 Embedded Systems Platform:

— Xilinx ML605, Altera DE4-530
« Advanced Processing Platform

— BEEcube BEE3, BEE4, miniBEE
« Software-Defined Radio Platform

— BEEcube miniBEE, RF daughtercard
» Simulation Acceleration Platform

— Nallatech P385-D5 (Altera Stratix V, OpenCL)
» Multiprocessor Array Platform

— NVIDIA Tesla K20 GPU

— Intel Xeon Phi
« Microsystems Integration Platform

— National Instruments PXl-based, FPGA, MEMS, microfluidics,
RF, photonics features

12/16/2015

NDN Development Systems
Community

MICROSYSTEMS

https://community.cmc.ca/community/development-systems

| ‘| Login

MICROSYSTEMS i e
®m [& rous -

Aore documents in @ Development Systems |+

Actions

I

Development Systems National Catalog

cf d by 1honJun 20, 2012 2:30 PM, last modif ondJan 18,2013 12:34 PM More Like This
)))))) = Introductory setup
The following Development Systems have been delivered to the National Design Network (NDN) for shared access. The designated Coordinator/Contact instructions for the BEEcube
can provide additional details on availability and how to access: miniBEE
y y y 3 y =| Advanced Processin
System Product Location/University Quantity Coordinator/Contact = Platform (BEE3) Design
BEEcube BEE3 (Advanced Processing Platform) et
CMC Microsystems (online access) (2 = Hugh Pollitt-Smith = Eﬁ.;ﬁgﬁ?em B
McMaster University 1 Dr. Nicola Nicolici £ Advanced Processing
University of Guelph 1 Dr. Stefano Gregori Flatform
- - - - " |=| Setup Information for the HP
MeGill University 1 Dr. Zeljko Zilic 7400 workstations (MLBO0S,
University of New Brunswick 1 Dr. Kenneth Kent DE4-530, BEES)
University of Saskatchewan 1 Dr. Seck-Bum Ko
Université du Québec a Chicoutimi |1 Dr. Hung-Tien Bui
Université du Québec a Trois- 1 Dr. Adel Omar Dahmane
Rivieres
Université du Québec 4 Outacuais |1 Dr. Ahmed Lakhssassi

University of Windsor 1 Dr.

=

Rashid Rashidzadeh

https://community.cmc.ca/community/development-systems

Upcoming emSYSCAN Development/‘
Systems deployments CMC

MICROSYSTEMS

« Embedded Systems Platform
— Xilinx Virtex-7, Ultrascale, Zyng options
— Altera Arria 10 and Arria 10 SoC options
— Shipping Q1 2016

« Advanced Processing Platform
— RFP currently in evaluation
— Shipping Q1/Q2 2016

« Software-defined Radio

— BEEcube nano/megaBEE (2x2 up to 16x16 MIMO
options)
— Shipping Q1 2016

12/16/2015

32 Institutions

Design,
compute, store
on local
resources;

I Secure
download

Secure, remote
access to platforms,
compute infrastructure
(thin client)

%

Benefiting
Canadians

* Information and
Communications
Technologies

* Healthcare

 Transportation

* Energy

* Manufacturing
» Security

ADEPT:

Advanced Design Platform Technology
Y R
N

Intellectual Fabrication
Property Process %
Blocks & Repository
Physical
~Design Kits)| . Equipment
© database
Advanced " Recipes
Design " TCAD
o
N
Computer-
Aided .
Design Tools ¢

—_—_—————————

Cybersecurity A
Testbed

Access Infrastructure

License Management
System

Compute Servers (Compute Canada)

User accounts, Accelerators
storage

-

» Lab Capabilities
* Recipe Development
* Prototyping

Fabrication '

Laboratories

5y

\

Vendors &
Partners

CAD tools
Intellectual Property
Blocks & Physical
Design Kits

Design Methods
Multi-project wafer
services & scale-up
manufacturing

O Existing
infrastructure

@ Secure links

Canada’s National Design Network — ADEPT Management & Operations
Includes software procurement, configuration, installation and delivery. Access and utilization management,
engineering/technical support. Cybersecurity installations, secure testbed assistance and demonstrations.

trainer events. Advisory Group coordination. Governance, reporting, legal and financial administration.

Train-the-

12/16/2015

IPP Distribution TMC

MICROSYSTEMS

« Based on Development Systems Coordinator consultations
in April 2014
— Generation 1 (2014/15): 18 systems

« USask, UQTR, Outaouais, McGilll, York, Windsor, Waterloo,
Western, Ottawa, Ryerson, RMC, Victoria

— Generation 2 (2016/17): 12 systems

 Memorial, Guelph, McMaster, Toronto, Polytechnique, UQTR,
Outaouais

12/16/2015

CMC

MICROSYSTEMS

_/

HPP: HETEROGENEOUS
PROCESSING PLATFORM

HPP main components CMC

MICROSYSTEMS

« The HPP workstation integrates the following main components:

Dual core Intel Xeon E5-2620 V3
NVidia GPU (Tesla K20)

FPGA board (Nallatech P385-A72).
Xeon Phi 7120A

« Key Platform Benefits

Customizability: Select the right mix of accelerators for your application
Greater flexibility for HW/SW exploration

Scalability: Create one node and scale up by adding more nodes

Fast automated setup and configuration

Faster path to commercialization

Technical support and training from CMC Microsystems

12/16/2015

HPP fully installed system

CMC

MICROSYSTEMS

Dell Precision Tower 7910 GPU Tesla k20 R
, i
E e
PCIeZ.OleI Inlez.oue

intel) |« (inteD
&z’u’ou e BL-zsﬁva "
Sandy bridge €9

e DDRA 64 GB
& 2 4
PCle2.0x16 tPCIe?o.OxS
Intel Phi 7120a FPGA Nallatech P385

12/16/2015

HPP Pre-Installed Software

Components cMC

MICROSYSTEMS

These software components required by the HPP are pre-installed on the workstation:
e RedHat Enterprise Linux 6.6 (Kernel version: 2.6.32-504.el6.x86_64)
e Java Runtime Environment (JRE)

e gcc compiler and toolchain

Software and tools
GPU Tesla K20 e NVIDIA CUDA 7 Toolkit

Nallatech FPGA P385 Altera Quartus 15.0, Altera SDK for OpenCL 1.0
. Nallatech FPGA P385 Board Support Package

Xeon Phi 7120a . Intel Manycore Platform Software Stack (MPSS) 3.5.1 for Linux

° Intel Parallel Studio XE 2015, Professional Studio for C++, Linux version

12/16/2015

HPP: GPU

12/16/2015

Applications Acceleration /CMC

MICROSYSTEMS

Applications

OpenACC Programming
Directives Languages

Libraries

12/16/2015

Applications Acceleration /CMC

MICROSYSTEMS

Applications

-

=

Libraries

~

/

OpenACC Programming

Directives Languages

12/16/2015

Libraries CMC

MICROSYSTEMS

 Ease of use: Deep knowledge of GPU programming is not required
* “Drop-in”: Standard APIs, minimal code changes
e Quality: High-quality implementations

* Performance: NVIDIA libraries are highly optimized

12/16/2015

CUDA Libraries Ecosystem

« CUDA Tools and Ecosystem
described in detail on NVIDIA

Developer Zone:

developer.nvidia.com/cuda-tools-
ecosystem

>, |

nvinDia

GPU-Accelerated Libraries

NVIDIA cufFT

NVIDIA CUDA Fast Fourier Transform
Library (cuFFT) provides a simple
interface for computing FFTs up to
10 faster, without having to develop
your own custom GPU FFT
implementation.

MAGMA

A collection of next gen linear
algebra routines. Designed for
heterogeneous GPU-based
architectures. Supports current
LAPACK and BLAS standards.

CilLF

A GPU accelerated Open Source C++
library of generic paraliel algorithms
for sparse linear algebra and graph
computations. Provides an easy to
use high-level intarface.

NVIDIA NPP

NVIDIA Performance Primitives is

a GPU accelerated library with a very
large collection of 1000 of image

DEVELOPER

Z0ONE
DEVELOPER C

.
NVIDIA cuBLAS
HVIDIA CUDA BLAS Library (cuBLAS) is
a GPU-accelerated version of the
complete standard BLAS library that
delivers 6x to 17x faster performance
than the latest MKL BLAS.

e

MSL Fortran Numerical Library
Developed by RogueWave, a
comprehensive set of mathematical
and statistical functions that offloads
wark to GPUs.

AArrayFire

AccelerEyes ArrayFire
Comprehensive GPU function library,
including functions for math, signal
and image processing, statistics, and

more. Interfaces for C, C++, Fortran,
and Python.

MVIDIA CUDA Math Library

An industry proven, highly accurate

collection of standard mathematical
functions, providing high

NTERS ~ TECHNOLOGIES

MICROSYSTEMS

TOO! RESOURCES

Adding GPU-acceleration to your application can be as easy s simply calling a library function. Check out the extensive list of
high performance GPU-accelerated libraries below. If you would like ather libraries added to this list please

E&ULA|tools

CULA Tools

GPU-accelerated linear algebra
library by EM Photonics, that utilizes
CUDA to dramatically improve the
computation speed of sophisticated
mathematics

NVIDIA cuSPARSE
MNVIDIA CUDA Sparse {cuSPARSE)
Marric library provides a collection of
basic linear algebra subroutines used
for sparse matrices that d
8x performance boost.

NVIDIA cuRy

The CUDA Random Humber
Generation library performs high
quality GPU-accelerated random
number generation (RNG) over 8x
faster than typical CPU enly code.

T
A powerful, open source library of
parallel algorithms and data
structures. Perform GPU-accelerated

1 <rap grancform and redicrion:

QUICKLINKS

The NVIDIA Registered Developer
Program

Registered Developers Website

NvDeveloper (old site)

CUDA Newsletter

CUDA Downloads

CUDA GPUs

Get Started - Parallel Computing
CUDA Spotlights

CUDA Tools & Ecosystem

FEATURED ARTICLES

INTRODUCING NVIDIA NSIGHT
VISUAL STUDIO EDITION 2.2, WITH
LOCAL SINGLE GPU CUDA
DEBUGGING!

OpenACC Compiler

=e=| For 5199

!- Introducing NVIDIA
y Msight Visual Studio

Edition 2.2, With

Local Single GPU CUDA
Debugging!

A

CUDA Spotlight:
Lorena Barba,
Boston University
Stanford To Host
CUDA On Campus
Day, April 13, 2012

- CUDA Spotlight:

12/16/2015

http://developer.nvidia.com/cuda-tools-ecosystem

Applications Acceleration

TMC

MICROSYSTEMS

Applications

-~

Libraries

\

OpenACC
Directives

~

/

Programming

Languages

12/16/2015

OpenACC Directives

12/16/2015

CPU GPU

b‘egram myscienage
. serial coie ...

!Sacc kernels
do k = 1,nl
do i = 1,n2

. parallel /code ..
enddo
enddo
!Sacc end kernels

-

>

-

OpenACC
compiler
Hint

~

J

End Program myscience

Original Code

CMC

MICROSYSTEMS

Applications Acceleration /CMC

MICROSYSTEMS

Applications

4 N

OpenACC Programming
Directives Languages

- /

Libraries

12/16/2015

GPU Programming Languages CMC

MICROSYSTEMS

— Numerical analytics: MATLAB, Mathematica, LabVIEW
— Fortran: OpenACC, CUDA Fortran

— C: OpenACC, CUDAC

— C++: Thrust, CUDA C++

— Python: PyCUDA, Copperhead

12/16/2015

HPP GPU :

CUDA DEVELOPMENT USING
NVIDIA NSIGHT, ECLIPSE
EDITION

12/16/2015

NVIDIA® Nsight™ Eclipse Edition CMC

MICROSYSTEMS

 CUDA Integrated Development Environment
 Project Management

« Edit
 Build
« Debug
 Profile

12/16/2015

Powered By Eclipse cCMC

MICROSYSTEMS

 Extensible viarobust selection of open-source and commercial
plugins

 Revision control: CVS, SVN, Git, Perforce, ...

* Issue tracking

e Strong cross-platform support
* Nsight Eclipse Edition available for Linux and Mac OSX

12/16/2015

Included In CUDA Toolkit CMC

MICROSYSTEMS

[root@HPPPrototype:~

File Edit View Search Terminal Help

[root@HPPPrototype ~]# export PATH=SPATH:/usr/local/cuda-7.8/bin

[root@HPPPrototype ~]# export LD LIBRARY PATH=/usr/local/cuda-7.8/11ib64:5LD LIBRARY PATH
[root@HPPPrototype ~]# export CUDA PATH=/usr/local/cuda-7.0

[root@HPPPrototype ~]# nsight&

[1] 25690

Nsight Eclipse Edition
Version: 7.0

(c) Copyright 2012-2015 NVIDIA Corporation. All rights reserved.
Visit http://developer.nvidia.com/cuda

This product includes software developed by the
/~ Eclipse Foundation http://eclipse.org/

: . Apache Software Foundation http://www.apache.org/
p ' 4 Terence Parr http://www.antir.org

-

b
+ 4
D O C e
?) Installation Details OK 1

12/16/2015

NVIDIA® Nsight™ Eclipse Edition CMC

MICROSYSTEMS

 CUDA Integrated Development Environment
— Project Management
— Edit
— Build
— Debug
— Profile

12/16/2015

Nsight Project Support CMC

MICROSYSTEMS

« CUDA C/C++

 Project Types
— Executable
— Shared Library
— Static Library

 New vs. Existing
— New project, build managed by Nsight
— EXxisting project, Nsight can use your Makefile

12/16/2015

Creating A New CUDA Project

MICROSYSTEMS

| Edit Source Refactor

Open File...

Rename...
Refresh
Convert Line Delimiters To

Navigate Search Project Run Window Help

CUDA C/C++ Project h
Makefile Project with Exis¥ng Code

C++ Project

C Project
Project...

Convert to a C/C++ Project (Adds C/C++ Nature)
Source Folder

Folder

Source File

Header File

CUDA C/C++ Project
Select the CUDA Sample
Select the CUDA sample to import to your local workspace

v CUDA C/C++ Project x
New CUDA C/C++ Project

Create a new project of selected type

Project name: |webinar2|

¥ Use default location

type: Toolchains:
ecutable CUDA Toolkit 7.0
Empty Project

CUDA Runtime Project

Samples install location: | /usr/local/cuda-7.0/samples

"~ Import CUDA Sample
Thrust Project
Shared Library

Simple

Template using CUDA Runtime
Unified Memory Streams
Using Inline PTX

a £al Pal

This CUDA Runtime API sample is a very basic sample that implements
element by element vector addition. It is the same as the sample

~ | ptatic Library
~| Makefile project

w project types and toolchains only if they are supported on the platform

"

.3

(<)

Next> | [Cancel

@ < Back Next > Cancel

Finish

12/16/2015

Nsight main window after creating a

new project

MICROSYSTEMS

C/C++ - webinar2/src/vectorAdd.cu - Nsight

File Edit Source Refactor Navigate Search Project Run Window Help
s - (=] & AT B v 65~ [@ ~ ?;3‘ - 0 v 9 ¥ Q - A O 0 W ¥ -~ O '=\‘., - = 4 - u 8 1 e v "
[Project Explorer 2 = & ¥ =0 [gvectorAdd.cu £ = 8 gz outline I . ® Make Target =g
v 15 webinar2 17 * of the programming gquide with some additions 1 i 2Rk " e % T
| 18 */ .
= (i Inc ude.s) o u stdio.h
b _:_,fusn‘?nc:u € 28 #include <stdio.h> cuda_runtime.h
= +4+/4.4, 5 .
P (= jusrfinclude/c++/4.4.7 .1. .) . o vectorAdd(const float*, const float*, float*, int) : v
b (= jusrfincludefc++/4.4.7/backward 22 f For the CUDA '..'WFlNL' routines (prefixed with "cuda ") o main(void)
b (= jusrfincludefc++/4.4.7/x86_64-redhat-linux ;'1 #include <cuda_runtine.h>
b (= jusrflibigce/x86_64-redhat-linux/4.4.7/include 25: J*#
b (= jusrflocal/cuda-7.0/include 26 * CUDA Kernel Device code
b ,_:-..fusrflocal,fcuda-?_Ofsamplesm_&mple 28 * Computes the vector addition of A and B into C. The 3 vectors have the same
b (= jusrflocal/cuda-7.0/samples/common/inc 29 * number of elements numElements.
[= jusrflocal/include 30 ¥/ .
P 31-_ global _ void
& webinar2 32 vectorAdd(const float *A, const float *B, float *C, int numElements)
- (@ src 33 {
= | b
2 cuda_runtime.h 36 if (i < numElements)
4 stdio.h 37 {) _ _
e mainfvoid) : int o . C[i] = A[1] + B[i];
e vectorAdd(const float*, const float*, float*, int) : void 30 }
41 [+
] \ B | D)
[Problems 8) Tasks B Console| [Properties| % Debug G Analysis ¥ =0
0 items
Description Resource Path Location Type
i I_)
0 Writable Smart Insert 34:48

12/16/2015

Edit

CMC

MICROSYSTEMS

 CUDA Integrated Development Environment

Project Management
Edit

Build

Debug

Profile

12/16/2015

CUDA Editor

CMC

MICROSYSTEMS

128
129
130
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
T4R

CUDA-aware syntax highlighting
Host / Device code highlighting
Smart code assist

As-you-type error detection

CUDA API documentation pop-ups
Automatic code refactoring

S/ Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;

int blocksPerGrid =({numElements + threadsPerBlock - 1) / threadsPerBlock;

printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock]);

vectorAdd<<<blocksPerGrid, threadsPerBlock==>(d A, d B, d C, numElements);

&

5

S

{

* CUDA Kernel Device code

__global wvoid
vectorAdd(const fleoat *A, const float *B, float *C, int numElements)

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

*# Computes the wvector addition of A and B into C. The 3 vectors have the same
* number of elements numElements.

<]

B

b

etErrorString(err));

12/16/2015

Edit

CMC

MICROSYSTEMS

 CUDA Integrated Development Environment

Project Management
Edit

Build

Debug

Profile

12/16/2015

CUDA Builder CMC

MICROSYSTEMS

* Full CUDA toolchain support
— All nvcc features
— Debug, release, and custom build configurations

« Dependent project support
— Static libraries
— Shared libraries
— Manages all build dependencies

« Source-correlated error reporting

12/16/2015

Build Error Reporting

CMC

MICROSYSTEMS

ol

G 82
83
84
85
&b
87
88
89
90
91
92
93

Twvar "Ju K — NULL,

err = cudaMalloc((void **)&d A, size, 3):

@ o instance of overloaded function "cudaMalloc" matches the argument list

if (e
{

R wn

EXserere ey
}

// Allocate the device input vector B
float *d B = NULL;
err = cudaMalloc((void **)&d B, size);

", cudaGetErrorString(err));

&, Problems | ¥ Tasks | El Console 52 I Properties| % Debug| T Analysis

CDT Build Console [webinar2]
../src/vectorAdd. cu(8Z]: error: no i1nstance of overloaded Tunction "cudaMalloc™ matches the argument (15t

argument types are: (vold **, size t, int)

1 error detected in the compilation of "/tmp/tmpxft 666810d7 00060860-16 vectorAdd.compute 50.cppl.ii”.
make: ##* [src/vectorAdd.o] Error 2

12/16/2015

Run Application

MICROSYSTEMS

> C/C++ - webinar2/src/vectorAdd.cu - Nsight -

File Edit Source Refactor Navigate Search Project Run Window Help

Wl gl&-Gla-e-E-6- -0 e-a-|N | os-|[HEm Bt v
HEIRI = I C R =

[Project Explo & = O || [¢ vectorAdd.cu & = O || 5= outline 2 . @ Make Target =0
5% V|77 h B[i] = rand()/(float)RAND MAX; TR EEE
78 }
79 4 stdoh
b 4P Binaries 80 // Allocate the device input vector A U cuda runtime.h
b g Includ 811 float *d A = MM H torAdd(const float, const float, loats, int) : v
il Includes 82 err = cudaballoc((void *)&d A, size); e vectorAdd(const float*, const float*, float*, int) : vo
= [Bsre 83 e main(void) : int
b [g vectoradd.cu 84 if ({err != cudaSuccess)
85
P & Debug 86 fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err));
87 exit(EXIT FAILURE);
88 }
89
(] L B (] A |
[2! Problems | ¥ Tasks | E Console 52 . = Properties| %% Debug| T Analysis % % & SE[E”E\ #BE-r3-"0
<terminated> webinar2 [C/C++ Application] /root/cuda-workspace/example/webinar2/Debug/webinar2 (11/29/15 4:47 PM)
[Vector addition of 50000 elements] (4]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED 1
Done 1
(I @ 5
1\ Writable Smart Insert 67:32

12/16/2015

Edit

CMC

MICROSYSTEMS

 CUDA Integrated Development Environment

Project Management
Edit

Build

Debug

Profile

12/16/2015

CUDA Debugger /CMC

MICROSYSTEMS

« Unified CPU / GPU Debugging
— Simultaneous visibility into both CPU and GPU state
— Multi-GPU support

* Full GPU debugging
— Set kernel breakpoints
— Single-step, run until, etc.

— View variables, registers, and expression values across
multiple GPU threads at the same time

— Examine thread, warp, block state
— Source and assembly level debugging

12/16/2015

Add a break point in the code CMC

MICROSYSTEMS

31 global _ void
32 vectorAdd(const float *A, const float *B, float *C, int numElements)

33 {
34 int i = blockDim.x * blockIdx.x + threadIdx.x;
35
36 if (i < numElements)
37 {
32 il = AT4i1 o RI4i1.
1 Toggle Breakpoint shift+Ctri+B
4" Add Breakpoint... Ctrl+Double Click _
4
4 31= _ global _ wvoid
4 32 vectorAdd(const float *A, const float *B, float *C, int numElements)
4 Breakpoint Types > 33 {
4 34 int i = blockDim.x * blockIdx.x + threadIdx.x;
j 35
4 Add Bookmark... s for CUDA calls 39 if (i < numElements)
4 Add Task... 37 { ‘ 1 ‘
5 “w 38 C[i] = A[i] + B[i]:
= [¥] Show Quick Diff shift+Ctrl+Q 39 }
5 Show Annotation ed, and compute its size 40 }
E Show Line Numbers float):
Falding = =2 ;
B r wPureI?reLct.eus:“ N e ruprerees| W DEbug | G Analysis

12/16/2015

GPU / CPU Threads, Call Stacks

MICROSYSTEMS

Debug - webinar2/src/vectorAdd.cu - Nsight

Filri_ Edit Source Refactor Navigate Search Project Run Window Help
Iy - R & $-0-e-a- | ® - © e - =} v "
¥ Debug 2 i ¥ = B =Variables 2 % Breakpoints] CUDA ¥ Registers =i Modules =0
< [E] webinar2 [C/C++ Application] X = i ¥
+ 3f# Host Process [webinar2] [5089] [cores: 14]
~ o Thread [1] 5089 [core: 14] (Suspended : Breakpoint)
= main() at vectorAdd.cu:49 0x40261d
¥l
[€] vectorAdd.cu 22 = 0| g= outline =2 B 1% ® & ¢ ¥ ¥ =0
44 =y U stdio.h
45= int .
46 main(void) a W cuda_runtime.h '
47 { |E| e vectorAdd({const float*, const float*, float*, int) : void
48 // Error code to check return values for CUDA calls e main({void) : int
® 49 cudakrror_t err = cudaSuccess;
58
51
52 // Print the vector length to be used, and compute its size
53 int numElements = 58000;
54 size t size = numElements * sizeof(float);
55 printf("[Vector addition of %d elements]\n", numElements);
56
a i
El console 32 ¥ Tasks | [2! Problems | & Executables [Memory G &H | LB [E|[E| s = R S =

webinar2 [C/C++ Application] gdb

Coalescing of the CUDA commands output is off.

[Thread debugging using libthread db enabled]

Using host libthread db library "/1ib64/libthread db.so.1".

12/16/2015

Stepping

MICROSYSTEMS

Debug - webinar2/src/vectorAdd.cu - Nsight

File Edit Source Refactor Navigate Search Project Run Window Help

Y - & & -0 -2-q-|x®» =ms e &> 5 - LSRR m v "
%5 Debug 53 ¥ = O || variables & % Breakpoints] CUDA | Registers =i Modules =0
+ [E] webinar2 [C/C++ Application] 5 B |

- @ I-rI)osthPm;e[ssi [webil;ar2] [50;3;3] [coresr.j: 1d4]) Name Type Value

=~ o Thread [1] 5089 [core: 14] (Suspended : Ste|
- . p p)= err cudaError_t cudaSuccess
= main{) at vectorAdd.cu:55 0x40263b - =
= ¢J- numElements int 50000
w gdb : f
&)= size size_t 200000
Po» h_A float * 0x44be05 <__ libc_csu_init+69>
P »dB float * 0x4127c3 =global constructors keye
) threadsPerBlock int 0
P » h_B float * 0x32ble0fba0
P o»dC float * 0x402e0f <_ sti___cudaRegisterAll[<]
I Il [

[¢ vectorAdd.cu &2 = O|| 5= Outline == Disassembly 52 Enter location here &) et ¥ =0

47 900000000040261d: movl $8x8,-0x48(%rbp)

48 J/ Error code to check return values for CUDA calls 0000000AE0402624 : movl $8xc350,-0x44(%rbp)

49 cudaError t err = cudaSuccess; =|| 0000000ROO48262b: mov -0x44(%rbp), %eax

58 |E| 000000000040262e ¢ cltg

51 0O00000000402630: shl $0x2,%rax

52 J// Print the vector length to be used, and compute its size 0000000000402634 : mov %rax, -0x40 (%rbp)

53 int numElements = 50000; 0000P0AR00402638: mov -0x44(%rbp),%eax

54 size t size = numElements * sizeof(float); » 000000000040263b: | mov %eax,%esi
® 55 printf("[Vector addition of %d elements]\n", numElements); 000000R0E040263d : mov $0x44bedd,%edi

56) 0000000000402642 mov $0x0,%eax

57 // Allocate the host input \.rec‘_EO" A 0000000000402647 : callg ©x40lea® <printf@plt>

58 float *h_A = (float *)malloc(size); 000000000040264C: mov -0x40(%rbp),%rax

50 AOADARANANAATIESA .« mats Srmw Sordd

a m & I [
= Console 82 . &) Tasks| [Z Problems | (3 Executables| (3 Memory Gk BE = B~ -~ =0

webinar2 [C/C++ Application] webinar2

a n

12/16/2015

GPU / CPU Threads, Call Stacks

MICROSYSTEMS

w

File Edit Source Refactor

|- B0 QW

£y -
%5 Debug 22
= [&] webinar2 [C/C++ Application]
= M vectorAdd [0] [device 0 (GK110)] (Breakpoint)
+ “, CUDA Thread (0,0,0) Block (0,0,0)
P @ All Kernel Threads (196 Blocks of 256 Threads)
I 1@ Host Process [webinar2] [5819] [cores: 7,12]
i gdb

[vectorAdd.cu &2 cudbgGetAPIVersion() at Ox7ffff77f65a8

34 int i = blockDim.x * blockIdx.x + threadIdx.x;
35

36 if (i < numElements)

37 {

C[i] = A[i] + B[il;

48 }

41

428 [f4*

43 * Host main routine
44 =/

45= int

46 main{void)

Navigate Search Project Run Window Help

I3

Debug - webinar2/src/vectorAdd.cu - Nsight

i = - LIRS = ~ "
i+ ¥ T O td= Variables | ®s Breakpoints @ CUDA £ - i Registers | =i Modules = =] ¥ =d
(el= (& 7]
<~ © [0] vectorAdd(A=0x2303e Device 0 (GK110) [104 blocks of 196 are running il
b & (0,0,0) SM 12 M 256 threads of 256 are running i
P @ (1,0,0) SM 11 M 256 threads of 256 are running
b i (2,0,0) SM 10 M 256 threads of 256 are running
P i (3,0,0) SM 9 M 256 threads of 256 are running
b i (4,0,0) SM 8 M 256 threads of 256 are running
b i (5,0,0) SM 7 M 256 threads of 256 are running
b i (6,0,0) SM 6 M 256 threads of 256 are running
b @ (7,0,0) SM 5 M 256 threads of 256 are running =
(<] i [[>])
= 8 | o= outline |2 Disassembly 2 Enter location here b et ¥ 50
[~ |le 38 Cli] = Ali] + BIil; (A
| ||* 0BBE0B00O0a02350: MOV R&, R8& =
= PEEEORDEE0a62358: ISET.LT.AND R9, R8, RZ, PT
I 0O00ORRERRa62360: SHF.L.U&4 R9, R8, ©0x2, R9
0E00OROER0a62368: SHL R®, R8, Ox2 3
PEEEORREEEa62370: MOV R1e, RO
0O00ORREREa62378: MOV R11l, R9
= 0E00OROER0a62380: L |
PEEEORDEE0a62388: IADD R2.CC, R2, R1®
0O00OPREREa6E2390: IADD.X R3, R3, R1l
0E00OROER0a62398: MOV R2, R2
— PEEEORREE0a623a0: MOV R3, R3 —
E3| ANANONAAAAAETI~0 . in C by oAl |

=] w

El Console 2 ¥ Tasks |[Zi Problems | {3 Executables [@ Memory

webinar2 [C/C++ Application] webinar2

[Vector addition of 50000 elements]

Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads

BaEE #e -

12/16/2015

Edit

CMC

MICROSYSTEMS

 CUDA Integrated Development Environment

Project Management
Edit

Build

Debug

Profile

12/16/2015

CUDA Profiler CMC

MICROSYSTEMS

« Unified GPU / CPU profiler

* Visualize GPU / CPU interactions Identify GPU utilization and
efficiency bottlenecks

* View low-level counters and metrics
 Multi-GPU support

« Automated application analysis identifies optimization
opportunities

 Online documentation gives direction on how to exploit
opportunities to get performance improvement

12/16/2015

Unified GPU / CPU Timeline

MICROSYSTEMS

File Edit Navigate Search Project Run Window Help

- E@ AR SR S LR
e} vectorAdd.cu & *webinar2 2 = 0| £ Properties &
dy M S v | K H YA A [0] Tesla K20c
GPU UUID
5 0.25s 05s 0.755 -
- ! L L L = Duration
=l Process "webinar2" (9417) .
Session
=] Thread 917743392 Compute/Memcg
Runtime API cudaMalloc cudaDeviceReset = Ly
Driver AP1 I = Overlap
Profiling Overhead [N I | kemel/Memcpy
= [0] Tesla K20c Memcpy/Memcpy
[=] Context 1 (CUDA) = Attributes
T MemCpy (HtoD) | Compute Capability
T MemCpy (DtoH) | = Maximums
=l Compute | Threads per Block
T 100.0% vectorAd... | Shared Memory per Block
= Registers per Block
Default |

Grid Dimensions

Block Dimensions

Warps per Multiprocessor
Blocks per Multiprocessor

T Analysis B2 - [Details| & Console

2 = &/ Reset All g, Analyze All i=EE

4 Low Compute /| Memcpy Efficiency [© 24 s/ 102816 ps = 0.061]

o enable kemel analysls stages select a host-launched The amount of time performing compute is low relative to the amount of time required for memcpy.

kernel instance in the timeline.
Application 4 Low Memcpy/Compute Overlap | 0 ns /624 s = 0% |
The percentage of time when memcpy is being performed in parallel with compute is low.

& Low Kernel Concurrency | 0 s 6.24 s = 0% |
Compute Utilization iy The percentage of time when two kemels are being executed in parallel is low.
& Low Memcpy Overlap [00 /32,512 s = O

Kernel Performance a, - o . _ .
The percentage of time when two memory copies are being performed in parallel is low.

12/16/2015

& 0.061

ih 0%
i 0%

w T oM

GPU-05b02ced-6800-6 |

823.071 ms (823,070,2

35 m

1024

48 KiB

65536

[2147483647, 65535,
[1024, 1024, 64 |

64

16 ki

e, :.;
Mare.
More...
Mare.
More...

Analysis Documentation

MICROSYSTEMS

Results
& Low Compute /| Memcpy Efficiency [© 24 s/ 102816 s = 0.061]
The amount of time performing compute is low relative to the amount of time required for memepy. More...
& Low Memcpy/Compute Overlap [0 s/ 6.24 s = 0% |
The percentage of time when memcpy is being performed in parallel with compute is low. More...
& Low Kernel Concurrency [0 s/ 6.24 |15 = 0% |
The percentage of time when two kemels are being executed in parallel is low. More...
& Low Memcpy Overlap [0ns /32512 us = 0%
The percentage of time when two memory copies are being performed in parallel is low. More...

% Workbench User Guide
= E CUDA C Best Practices Guide
[Preface
&1 1. Assessing Your Application
4 2. Heterogeneous Computing
#I (14 3, Application Profiling
2 4. Parallelizing Your Application
* 14 5, Getting Started
= (4 6. Getting the Right Answer
“1 7. Optimizing CUDA Applications
[8. Performance Metrics
1 9. Memory Optimizations
=
[# 4 9.2. Device Memory Spaces _
£ 9.3. Allocation k
71 (14 10. Execution Configuration Optimizations
% (14 11. Instruction Optimization
4 12. Control Flow
&1 13. Deploying CUDA Applications
[14. Understanding the Programming Environment
= (14 15, Preparing for Deployment
[16. Deployment Infrastructure Tools
(14 A, Recommendations and Best Practices
[B. nvee Compiler Switches
“ % CUDA C Programming Guide
= %* EGit Documentation
“ @ Nsight, Eclipse Edition User Guide
=% profiler User's Guide
© © RSE User Guide

9.1. Data Transfer Between Host and Device

The peak theoretical bandwidth between the device memory and the GPU is much higher (177.6 GB/s on the NVIDIA Tesla M2090, for
example) than the peak theoretical bandwidth between host memory and device memory (8 GB/s on the PCle x16 Gen2). Hence, for best
overall application performance, it is important to minimize data transfer between the host and the device, even if that means running kernels
on the GPU that do not demonstrate any speedup compared with running them on the host CPU,

Note: High Priority: Minimize data transfer between the host and the device, even if it means running some kernels on the device that do not
show performance gains when compared with running them on the host CPU.

Intermediate data structures should be created in device memory, operated on by the device, and destroyed without ever being mapped by the
host or copied to host memory.

Also, because of the overhead associated with each transfer, batching many small transfers into one larger transfer performs significantly
better than making each transfer separately, even if doing so requires packing non-contiguous regions of memory into a contiguous buffer and
then unpacking after the transfer.

Finally, higher bandwidth between the host and the device is achieved when using page-locked (or pinned) memory, as discussed in the CUDA
C Programming Guide and the Pinned Memory section of this document.
9.1.1. Pinned Memory

Page-locked or pinned memory transfers attain the highest bandwidth between the host and the device. On PCle x16 Gen2 cards, for example,
pinned memory can attain roughly 6GB/s transfer rates.

Pinned memory is allocated using the cudatostalloc() functions in the Runtime API. The bandwidthTest CUDA Sample shows how to use these
functions as well as how to measure memory transfer performance.

For regions of system memory that have already been pre-allocated, cudatostRegister() can be used to pin the memory on-the-fly without the
need to allocate a separate buffer and copy the data into it.

Pinned memory should not be overused. Excessive use can reduce overall system performance because pinned memory is a scarce resource,
but how much is too much is difficult to know in advance. Furthermore, the pinning of system memory is a heavyweight operation compared
to most normal system memory allocations, so as with all optimizations, test the application and the systems it runs on for optimal
perfor'mance parameters.

Power profiling using nvidia-smi 7~ 4~

MICROSYSTEMS

* nvidia-smi -q -d POWER -1 0 -| 1 -f out.log
> =q, ——query Display GPU or Unit info

» —=d TYPE, ——display=TYPE Display only selected information: MEMORY,
UTILIZATION, ECC, TEMPERATURE, POWER, CLOCK, COMPUTE...

» =i, =—id=ID Display data for a single specified GPU or Unit.

» =fFILE, ——filename=FILE Redirect query output to the specified file in place of the
default stdout. The specified file will be overwritten.

Power Consumption GPU (Watts)

123456 7 8 910111213141516171819202122232425262728

12/16/2015

50
45
40
3
3
2
2
1
1

o o0 O o0 O o1 O O

o
&
)

()

D
>

-

HPP: FPGA

12/16/2015

FPGA pains /CMC

MICROSYSTEMS

* Programmabillity Is an issue

— Hardware Description Languages (HDLSs) are
complexe

— At Register transfer level (RTL) abstraction

— Designer needs to :
« Create Custom Memory Hierarchies
« Manage Communication with PC
« Create PC side SW that plays nice with all this

12/16/2015

OpenCL for FPGA FMC

MICROSYSTEMS

* Unified programming model
— More accessible to the software developpers
— Host CPU-FPGA communication
— C based programming language
— Memory Hierarchy auto generated
— Potential to integrate existing VHDL/Verilog IP

12/16/2015

OpenCL for FPGA
P CMC

MICROSYSTEMS

main()
OpenCL {
Kernel Program Host Program + Kernels read_data_from_file(...);
maninpulate_data(...);
__kernel void ‘
sum(__global const float *a, clEnqueueWriteBuffer(...);

__global const float *b,

clEnqueueTask(..., my_kernel, ...);
__global float *answer) Spe)lt:rfir Cs(t)ac?r?l:;'lir clEnqueueReadBuffer(...);
{
int xid = get_global_id(0); OpenCL

display_result_to_user(...);

answer(xid] = a[xid] + b[xid];
} | 3§ U
SOF X86 binary

&=

PCle

x86

White Paper: Implementing FPGA Design with the OpenCL Standard (Figure 4)

12/16/2015

Kernel Source
Code #1 (.cl)

Kernel Source
Code #2 (.cl)

Kernel Source
Code £3 (.d)

The AOCL FPGA Programming Flow

\

/

Altera Offline Compiler
for OpenCL Kernels

(.aoco, a0

|:C0nsc|idated Kernel Binary &

Kernel Source
Code #4 (.cl)

Kernel Source
Code £5 (.cl)

Kernel Source
Code #6 (.cl)

\

/

Altera Offline Compiler
for Open(L Kernels

- ————————

(.a0C0o, .a0Ccx)

Consolidated Kernel Binary BJ

Kernel Binary B
(.aoox)
Kermel Binary A
(.aocx)

CMC

MICROSYSTEMS

Host Code

o
Standard
C Compiler

Host Binary

___,_-'/

12/16/2015

AOCL design flow steps CMC

MICROSYSTEMS

1. Intermediate compilation (aoc —c [-g] <your_kernel_filename>.cl)
— Checks for syntatic errors
— Generates a .aoco file without building the hardware configuration file
— Generate estimated resource usage summary <your_kernel filename>.log

2. Emulation (aoc -g <your_kernel_filename>.cl)

— The AOCL Emulator generates a .aocx file that executes on x86-64 Windows or
Linux host

— Assess the functionality of your OpenCL kernel
3. Profiling (aoc --profile <your_kernel_filename>.cl)
— aocl report <your_kernel_filename>.aocx profile.mon

— Instruct the Altera Offline Compiler to instrument performance counters in the
Verilog code in the .aocx file

— During execution, the performance counters collect performance information
which you can then review in the Profiler GUI.

4. Full deployment
— Execute the .aocx file on the FPGA

12/16/2015

OpenCL Overview

CMC

MICROSYSTEMS

FPGA

Kernel Kernel Kernel
Pipeline Pipeline Pipeline

Local Memory Local Memory Local Memory
Interconnect Interconnect Interconnect

White Paper: Implementing FPGA Design with the OpenCL Standard (Page: 7)

12/16/2015

Nallatech 385 Hardware
Overview cCMmMC

MICROSYSTEMS

Fan power Power Supply
connector CPLD DDR3 SDRAM Inductors

header banks

2 RGB
FPGA) Altera
Dual SFP+ cage 2 Altera Stratix-V 1Gb Flash
LEDs Shd Gight Pibes 4 bi-colour tser FEGA MACI
PP FPGA LEDs CPLD

« The key features of the 385 include:
» PCI Express form factor
« 8-lane PCI Express up to 3.0 host interfacel
« FPGA options
» Altera Stratix-V 5SGXMA7H2F35C2N
» Altera Stratix-V 5SGSMD5H2F35C2N
« Two 10G LAN/WAN/FC Ethernet channels accessed via two SFP+ ports2
« Two banks of SDRAM memory, each bank with 4GByte, x72, DDR3 SDRAM running
at 1600 MT/s

12/16/2015

BSP and Altera SDK for OpenCL CMC

MICROSYSTEMS

* Four layers of the Altera Software Development Kit (SDK) for OpenCL :

Runtime (OpenCL API)

HAL for memory transfers and kernel launches

MMD layer for raw read and write operations

Kernel mode driver for accessing communication medium

Board Hardware

« The Nallatech OpenCL BSPs provide a memory-mapped device (MMD) layer
necessary for communication with the accelerator board and the lower level kernel
mode driver.

« All other upper software layers are provided by the Altera SDK for OpenCL
installation.

12/16/2015

Linux Vector Addition

Walkthrough CMC

MICROSYSTEMS

 Step 1 Compile

— aoc -V --board p395_ hpc_ab vectorAdd.cl
« Step 2 Build the Host code

— make
« Step 3 Execute

— ./vector_add

* Generated files:
— vectorAdd.log — kernel compilation with estimated resource usage and Qsys generation.

— quartus_sh_compile.log — Quartus tools build log for generating the actual FPGA hardware
aocx file.

— acl_quartus_report.txt — Final results for the generated design including final resource usage
figures.

12/16/2015

Power consumption reading cCMC

MICROSYSTEMS

. Note that this requires that you have already opened the card using the normal opencl SDK routines (i.e. in init_opencl in this case).
. aocl_mmd_card_info("aclo", AOCL_MMD_POWER, sizeof(float),(void*) &power, &returnedSize);
. printf("before run Power = %f W\n", power);

. aocl_mmd_card_info("aclo", AOCL_MMD_BOARD_UNIQUE_ID, sizeof(int), (void*) &uniqueld, &returnedSize);
. printf("Board Unique ID = %d\n", uniqueld);

[root@HPPPrototype binl# ./matrix mult
Matrix sizes:

A: 2048 x 1024

B: 1024 = 1024

C: 2048 x 1024

MMD ERROR: MMD must be opened kbefore calling accl mmd card infoInitializing OpencCL
Platform: Altera SDE for OpenCL
Using 1 device (s)
P3852 hpc a7 : PCIe3E85n
Using AQCX: matrixMult.aocx
Reprogramming device with handle 1
Generating input matrices
before run Power = 17.8%84531 W
Board Unigque ID = 7802811
Albout to call run
Launching for dewvice 0 (gleobal size: 1024, Z048)
During run Power = 18.947571 W

Time: 38.713 ms
EFEernel time (device 0): 38.5%94 ms

Throughput: 110.%4 GFLOFPS

Computing reference output
Verifying

Verification: PASS

after run Power = 18.0&3171 W

CMC

_/i

MICROSYSTEMS

Project status

CMC

MICROSYSTEMS

Status (12 universities selected 18 systems G1, 7 universities selected 8 G2)
o Assembled, cloned, tested and shipped 18/18 units
o (1) Quick start guide : Heterogeneous Parallel Platform (HPP)

o Introduction to the HPP-Heterogeneous Parallel Platform: A combination of Multicores,
GPUs, FPGAs and Many-cores accelerators (August 26)

In progress
o (2) User Guide: Performance and Power profiling for the HPP

o Programming models, performance and power profiling for the HPP-Heterogeneous Parallel
Platform (December 2"d)

Next (Webinars series for the HPP)

o Computer vision using OpenCV/OpenCL targeting the HPP- Heterogeneous Processing
Platform (January 13™)

12/16/2015

Workshop on Heterogeneous
Computing Platforms (Scope) CMC

MICROSYSTEMS

Location: Toronto
Date: TBD (February 15 - February 19, 2016)
Objective

» Bring researchers from academia and expert from industry to discuss about heterogeneous computing and
explore collaboration opportunities

Technical session: presentations
* Applications and Algorithms

« Software stack and tools

* Heterogeneous systems Architecture

Breakout session: Discuss and report
— What are the next generation platforms specifications?
» What is the ranked list of platform features that would enable this research?
— What are the key research problems that needs acceleration?
— What are the top three barriers preventing access and effective use of these platforms?
— What are the challenges and Opportunities
— What barriers could CMC help lower ?

— What would enable and encourage a vibrant community of researchers sharing platform configuration
files and other knowledge?

— Any other feedback and guidance

12/16/2015

CMC

MICROSYSTEMS

Yassine Hariri
Hariri@cmc.ca

12/16/2015

