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EMSYSCAN DEVELOPMENT 

SYSTEMS UPDATE 
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Microsystems
Rapid-Prototyping,
Characterization
and Integration Labs

4 Universities:
• UBC
• U Manitoba
• Queen’s
• École Polytechnique

Common, Shared Platforms
Interconnected Community of Users
Knowledge Repository
Centralized Management & Operations

License 
Management
Server (LMS)

Real-Time 
Embedded 
Software Lab

University of 
Waterloo

Multi-Technology Design 
Environment

Development Systems
• System validation and

proof-of-concept demonstration

• System architecture exploration 
• Multi-technology simulation
• Design of custom devices for

manufacturing

Development
System 

HardwareLicense
Management

Appliance

• Design, analysis, 
debug  of real-time 
software on next-
generation processor 
systems

Installed
Design 

Environment

Embedded Systems Canada (emSYSCAN)
$54M investment in Canada’s National Design Network
37+ universities, 250+ faculty, 5 years

©  2013, CMC Microsystems 
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Development Systems for 
Proof of Concept

Images courtesy of National Instruments, Xilinx, BEECube,, NVIDIA
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• Common set of programmable research platforms with 
proof of concept features

• Pooled equipment timeshared among users
• Sharing of knowledge on equipment usage
• Adaptive over time in terms of equipment quantities and 

equipment features 
• Large community of users, institutions
• Leveraged industrial partners (e.g., STMicro.)

National Research Platform: 
Enriched Projects; Results Sooner

National project scope and sizeable outcomes 
enabled by centralized project implementation and 

management by CMC Microsystems
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Installation and usage

• Shared access systems can be accessed at no charge but 
require Designer level subscription
– Subscription provides access to support, tools, reference 

designs, forums, workshops, travel, select/swap, training, 
additional discounts

• Systems delivered on site, remote access
• Designated Development System coordinator(s) at each site

– Communicate institutional needs for purchase 
specifications

– Local advocate, information source
– Encourage participation in National Project
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emSYSCAN Development 
Systems delivered (Gen1)

• Embedded Systems Platform:
– Xilinx ML605, Altera DE4-530

• Advanced Processing Platform
– BEEcube BEE3, BEE4, miniBEE

• Software-Defined Radio Platform
– BEEcube miniBEE, RF daughtercard

• Simulation Acceleration Platform
– Nallatech P385-D5 (Altera Stratix V, OpenCL)

• Multiprocessor Array Platform
– NVIDIA Tesla K20 GPU
– Intel Xeon Phi

• Microsystems Integration Platform
– National Instruments PXI-based, FPGA, MEMS, microfluidics, 

RF, photonics features
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NDN Development Systems 
Community

https://community.cmc.ca/community/development-systems
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Upcoming emSYSCAN Development 
Systems deployments

• Embedded Systems Platform
– Xilinx Virtex-7, Ultrascale, Zynq options
– Altera Arria 10 and Arria 10 SoC options
– Shipping Q1 2016

• Advanced Processing Platform
– RFP currently in evaluation
– Shipping Q1/Q2 2016

• Software-defined Radio
– BEEcube nano/megaBEE (2x2 up to 16x16 MIMO 

options)
– Shipping Q1 2016
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emSYSCAN
Wireless Sensor Network Kits

• For researchers interested in topics related to the Internet of Things, healthcare, 
smart sensor systems & algorithms & wireless communications.  

• Zigbee and Bluetooth based components including:
– IAR Embedded Workbench for ARM Cortex M
– Mpression Odyssey MAX 10 FPGA with Bluetooth
– Freescale Freedom, Beaglebone, Raspberry Pi, 
– CC2538DK, CC2650STK, programmers
– 10-port USB Industrial Charger (power source)

• Timeline: 
– IAR Embedded Workbench for ARM Cortex-M, dev kits, 

& programmers delivered Jan 7, 2016 to 14 universities 
– Zigbee connectivity documentation, end of Feb 2016.

• Details at:
– www.cmc.ca | Products & Services |

Development Systems | Sensor Platforms | Wireless Sensor Network Kits
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Canada’s National Design Network – ADEPT Management & Operations
Includes software procurement, configuration, installation and delivery. Access and utilization management, 
engineering/technical support. Cybersecurity installations, secure testbed assistance and demonstrations.      Train-the-
trainer events. Advisory Group coordination. Governance, reporting, legal and financial administration.

32 Institutions

Multi-technology 
Interposer

Sensor/
Actuator

Heterogeneous
Embedded

Silicon
Photonics

User Platform 1
Computer-

Aided
Design Tools

…

Compute Servers (Compute Canada)

Accelerators

Design, 
compute, store 
on local 
resources; 
secure 
download

Secure, remote
access to platforms, 
compute infrastructure 
(thin client)

ADEPT:

Advanced Design Platform Technology 

Fabrication
Process
Repository

Fabrication
Laboratories

Cybersecurity
Testbed

License Management 
System

• Lab Capabilities
• Recipe Development
• Prototyping

• Equipment 
database

• Recipes
• TCAD

Design Platforms

Observation, 
analysis, delivery

Vendors & 
Partners

• CAD tools
• Intellectual Property 

Blocks & Physical 
Design Kits

• Design Methods
• Multi-project wafer 

services & scale-up 
manufacturing

User accounts, 

storage

Advanced
Design

Methods

Intellectual 
Property 
Blocks & 
Physical 

Design Kits

Benefiting 
Canadians

• Information and 
Communications 
Technologies

• Healthcare
• Transportation
• Energy

• Manufacturing
• Security Existing 

infrastructure

Secure links

Access Infrastructure
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HPP Distribution

• Based on Development Systems Coordinator consultations 
in April 2014:
– Generation 1 (2014/15): 18 systems

• USask, UQTR, Outaouais, McGill, York, Windsor, Waterloo, 
Western, Ottawa, Ryerson, RMC, Victoria

– Generation 2 (2016/17): 12 systems
• Memorial, Guelph, McMaster, Toronto, Polytechnique, UQTR, 

Outaouais
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HPP: HETEROGENEOUS 

PROCESSING PLATFORM
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HPP Project status

Status (12 universities selected 18 systems G1, 7 universities selected 8 G2)

oAssembled, cloned, tested and shipped 18/18 units

Tutorials and reference designs

oQuick start guide : Heterogeneous Parallel Platform (HPP) Available online

oUser Guide: Performance and Power profiling for the HPP Release Date: early Feb. 2016 

oComputer vision using OpenCV/OpenCL targeting the HPP- Heterogeneous Processing 

Platform Release Date: early Feb. 2016 

Webinars series for the HPP

o Introduction to the HPP-Heterogeneous Parallel Platform: A combination of Multicores, 

GPUs, FPGAs and Many-cores accelerators (August 26th) Available online

oProgramming models, performance and power profiling for the HPP-Heterogeneous Parallel 

Platform (December 2nd) Available online Available online

oComputer vision using OpenCV/OpenCL targeting the HPP- Heterogeneous Processing 

Platform (January 13th) 

15



HPP fully installed system 
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Computer Vision

1/13/2016

• What is Computer Vision?
– “Computer vision is the transformation of data from a still or video camera into either a decision or 

a new representation”
– ” Learning OpenCV: Computer Vision with the OpenCV Library Paperback – Oct 4 2008 

by Gary Bradski (Author), Adrian Kaehler (Author)

• Computer vision is a rapidly growing field for many reasons:
– High quality Cameras availability and low cost, 
– Increasing processing power, 
– Mature computer vision algorithms.

• Various applications of computer vision, including: 
– objects detection, inspection and tracking, lane tracking and pedestrian detection in 

automotive, robotic systems, video surveillance, biometrics, augmented reality gaming, 
new user interfaces, and many more. 
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Computer Vision challenges and 
opportunities

Challenges
• Compute-intensive, therefore require high compute capabilities.
• Many computer-vision scenarios must be executed in real-time  

– The processing of a single frame ~30-40 milliseconds. 
• In the embedded space, Power consumption is a huge issue

Opportunities
• Build efficient computing architectures

• More transistors per area, 
• Make a good use of these transistors

• Parallelization: creating more identical processing units. 
• Specialization: building domain-specific hardware accelerators.

• Heterogeneous parallel computing
• The concept of combining these two ideas leads to, heterogeneous computing 

combining many-cores CPUs, GPUs, FPGAs together with various accelerators. 
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Nature is massively parallel

Parallel

Heterogeneous

Efficient

Reliable
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Heterogeneous systems
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Parallel

Heterogeneous

Efficient

Reliable

Data…
Context… 



Computer Vision and 
Heterogeneous Computing

• Many high-level tasks consist of both parallel and serial subtasks:
– Parallel subtasks: “embarrassingly parallel,” because they are so easy to parallelize 

• Ex. rendering or filtering pixels. 

– Serial subtasks: do not parallelize easily, as they contain serial segments where the 
results of the later stages depend on the results of earlier stages. 

• Ex. Many iterative numerical optimization algorithms, stack-based tree-search 

algorithms

• Heterogeneous approach for computer vision applications
– Run “embarrassingly parallel,”  tasks on the GPU or FPGA
– Run sequential tasks on the multi-core CPU or FPGA

• Key challenges (Research direction)
– Synchronization between dependent tasks
– The overhead of moving the data between the different processing units
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Heterogeneous Systems Architecture

Software stack

GPU FPGA ASIC

Hardware

Multicore
Host CPU

Interconnect

SAP, MPA, HPP

Het. Emb. Proc. Platform

Software applications
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• Open source library for computer vision, image processing and machine 

learning 

• Permissible BSD license 

• Freely available (www.opencv.org) 

• Portability 

• Real-time computer vision (x86 MMX/SSE, ARM NEON, CUDA) 

• C (11 years), now C++ (3 years since v2.0), Python and Java 

• Windows, OS X, Linux, Android and iOS 

OpenCV
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• Usage 

– >6 million downloads, > 47,000 user group 

– Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota 

• Applications 
– Street view image stitching 

– Automated inspection and surveillance 

– Robot and driver-less car navigation and control 

– Medical image analysis 

– Video/image search and retrieval 

– Movies - 3D structure from motion 

– Interactive art installations 

Usage 
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• Image/video I/O, processing, display (core, imgproc, highgui) 

• Object/feature detection (objdetect, features2d, nonfree) 

• Geometry-based monocular or stereo computer vision (calib3d, 
stitching, videostab) 

• Computational photography (photo, video, superres) 

• Machine learning & clustering (ml, flann) 

• CUDA and OpenCL GPU acceleration (gpu, ocl) 

Functionality 
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HPP: GPU

OPENCV + CUDA

1/13/2016 26



• Create a directory for OPENCV
– mkdir OPENCV

– cd OPENCV/

• Getting the Cutting-edge OpenCV from the Git Repository
– git clone https://github.com/Itseez/opencv_contrib.git

– cd opencv

• Create a temporary directory where you want to put the generated Makefiles, project 

files as well the object files and output binaries:
– mkdir release

– cd release/

• Configuration:
– cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

• Build:
– make

– sudo make install

• Add OpenCV CUDA libraries
– cmake -D WITH_CUDA=ON -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D 

INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON 
-D WITH_OPEN_GL=ON -D WITH_vtk=ON ..

– sudo make

– sudo make install

Installation of OpenCV on the HPP
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• The GPU module is designed as a host-level API
• Set of classes and functions to achieve the best performance with GPUs 
• Implemented using NVIDIA* CUDA* Runtime API and supports only 

NVIDIA GPUs
• Maintain conceptual consistency with the current CPU functionality 
• The OpenCV GPU module includes:

– Utility functions and Low-level vision primitives:
• Provide a powerful infrastructure for developing fast vision algorithms taking 

advantage of GPU

– High-level algorithms:
• State-of-the-art algorithms (such as stereo correspondence, face and people 

detectors, and others).

OpenCV GPU Module 
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#include<opencv2/opencv.hpp>
using namespace cv;
int main() 
{
Mat src, dst;
src = imread(“test.jpg”, 0); 
bilateralFilter(src, dst, -1, 50, 7); 
Canny(dst, dst, 0, 30, 3);   
imwrite(“out.png”, dst); 
}

OpenCV CPU example 
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�OpenCV header files 

�OpenCV C++ namespace 

�Allocate a temp 

�Load an image file as grayscale 
�Filter the image 

�Find the edges, drawn as white pixels 

�Store to an image file 
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OpenCV CPU example 
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#include<opencv2/opencv.hpp>
using namespace cv;
int main() 
{
Mat src, dst;
src = imread(“test.jpg”, 0); 
bilateralFilter(src, dst, -1, 50, 7); 
Canny(dst, dst, 0, 30, 3);   
imwrite(“out.png”, dst); 
}
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#include <opencv2/opencv.hpp>   ����OpenCV GPU header file 

#include <opencv2/gpu/gpu.hpp> 
using namespace cv; 
int main() { 
Mat src = imread(“test.jpg”, 0); 
if (!src.data) exit(1); 
gpu::GpuMat d_src(src); ����Upload image from CPU to GPU memory

gpu::GpuMat d_dst; ����Allocate a temp output image on the GPU 

gpu::bilateralFilter(d_src, d_dst, -1, 50, 7); ����Process images on the GPU 

gpu::Canny(d_dst, d_dst, 0, 30, 3); ����Process images on the GPU 

Mat dst(d_dst); ����Download image from GPU to CPU mem

imwrite(“out.png”, dst); 
return 0; 
} 

OpenCV CUDA example 
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#include <opencv2/opencv.hpp> 
#include <opencv2/gpu/gpu.hpp> 
using namespace cv; 
int main() { 
Mat src = imread(“car1080.jpg”, 0); 
if (!src.data) exit(1); 
gpu::GpuMat d_src(src); 
gpu::GpuMat d_dst; 
gpu::bilateralFilter(d_src, d_dst, -1, 50, 7); 
gpu::Canny(d_dst, d_dst, 35, 200, 3); 
Mat dst(d_dst); 
imwrite(“out.png”, dst); 
return 0; 
} 

OpenCV CUDA example 
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• GPU Module Introduction
• Initalization and Information
• Data Structures
• Operations on Matrices
• Per-element Operations
• Image Processing
• Matrix Reductions
• Object Detection
• Feature Detection and Description
• Image Filtering
• Camera Calibration and 3D Reconstruction
• Video Analysis

GPU-accelerated Computer Vision
http://docs.opencv.org/2.4/modules/gpu/doc/gpu.html
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• Source Codes are available in: opencv/samples/gpu

• Building and running the hog.cpp

1. Save the original CMakeLists.txt to CMakeLists_original.txt 

2. Edit CMakeLists.txt

3. Compile, link and build

4. Run

Building and running OpenCV CUDA 
example 

1/13/2016

cmake_minimum_required(VERSION 2.8)
project(HogCode)
find_package(OpenCV REQUIRED)
add_executable(HogCode hog.cpp)
target_link_libraries(HogCode ${OpenCV_LIBS})

[root@HPPPrototype gpu]# cmake .
-- The C compiler identification is GNU 4.4.7
-- The CXX compiler identification is GNU 4.4.7
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Found CUDA: /usr/local/cuda-7.0 (found suitable exact version "7.0") 
-- Configuring done
-- Generating done
-- Build files have been written to: /root/OPENCV/opencv/samples/gpu
[root@HPPPrototype gpu]# make
Scanning dependencies of target HogCode
[100%] Building CXX object CMakeFiles/HogCode.dir/hog.cpp.o
Linking CXX executable HogCode

[root@HPPPrototype gpu]# ./HogCode road.png --camera 0
Device 0:  "Tesla K20c"  4800Mb, sm_35, 2496 cores, Driver/Runtime 
ver.7.50/7.0

Controls:
ESC - exit
m - change mode GPU <-> CPU
g - convert image to gray or not
1/q - increase/decrease HOG scale
2/w - increase/decrease levels count
3/e - increase/decrease HOG group threshold
4/r - increase/decrease hit threshold
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HPP: GPU

OPENCV + CUDA
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HPP: FPGA

OPENCL+OPENGL
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OpenCL vs. OpenGL

• Unified programming model 
– More accessible to the software developers
– Host CPU-FPGA communication 
– C based programming language
– Memory Hierarchy auto generated
– Potential to integrate existing VHDL/Verilog IP

• Open Graphics Library (OpenGL)
– Cross-language, cross-platform application programming 

interface (API) for rendering 2D and 3D vector graphics. 
– The API is typically used to interact with a graphics 

processing unit (GPU), to achieve hardware-
accelerated rendering.
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OpenCL for FPGA
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White Paper: Implementing FPGA Design with the OpenCL Standard (Figure 4)
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OpenCL Overview
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White Paper: Implementing FPGA Design with the OpenCL Standard (Page: 7)
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AOCL design flow steps

1. Intermediate compilation (aoc –c [-g] <your_kernel_filename>.cl)

– Checks for syntatic errors
– Generates a .aoco file without building the hardware configuration file
– Generate estimated resource usage summary <your_kernel_filename>.log

2. Emulation (aoc -g <your_kernel_filename>.cl)

– The AOCL Emulator generates a .aocx file that executes on x86-64 Windows or 
Linux host

– Assess the functionality of your OpenCL kernel

3. Profiling (aoc --profile <your_kernel_filename>.cl)

– aocl report <your_kernel_filename>.aocx profile.mon
– Instruct the Altera Offline Compiler to instrument performance counters in the 

Verilog code in the .aocx file
– During execution, the performance counters collect performance information 

which you can then review in the Profiler GUI.

4. Full deployment

– Execute the .aocx file on the FPGA
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Sobel Filter Design Example

int main(int argc, char **argv)
{

imageFilename = (argc > 1) ? argv[1] : "butterflies.ppm";
initGL(argc, argv);

initCL();

input = (cl_uint*)alignedMalloc(sizeof(unsigned int) * rows * cols);
output = (cl_uint*)alignedMalloc(sizeof(unsigned int) * rows * cols);

// Read the image
if (!parse_ppm(imageFilename.c_str(), cols, rows, (unsigned char *)input)) {

std::cerr << "Error: could not load " << argv[1] << std::endl;
teardown();

}
std::cout << "Commands:" << std::endl;
std::cout << " <space>  Toggle filter on or off" << std::endl;
std::cout << " -" << std::endl << "    Reduce filter threshold" << std::endl;
std::cout << " +" << std::endl << "    Increase filter threshold" << std::endl;
std::cout << " =" << std::endl << "    Reset filter threshold to default" << std::endl;
std::cout << " q/<enter>/<esc>" << std::endl << "    Quit the program" << std::endl;
glutMainLoop();

teardown(0);

}

1/13/2016

Initialize OpenGL

Initialize OpenCL

Allocate Buffers on the HOST

Parsing the image

How to control de app.

GLUT event processing loop

Free the resources
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initGL

void initGL(int argc, char **argv)
{

***
glutWindowHandle = glutCreateWindow("Filter");

***
glutKeyboardFunc(keyboard);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutIdleFunc(idle);
glutTimerFunc(REFRESH_DELAY, timerEvent, 0);

***
}
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void keyboard(unsigned char key, int, int)
{    switch (key) {

case ' ':

useFilter = !useFilter;
break;

case '=':
thresh = 128;
break;

case '-':
thresh = std::max(thresh - 10, 16u);
break; ***  }}

void display()
{

glClear(GL_COLOR_BUFFER_BIT);

if (useFilter) {

filter(output);
glDrawPixels(cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, output

} else {
glDrawPixels(cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, input);

}

***
}
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initCL

void initCL()
{

platform = findPlatform("Altera");
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(info), info, NULL);
context = clCreateContext(0, num_devices, &device, NULL, NULL, &status);
queue = clCreateCommandQueue(context, device, 0, &status);
std::string binary_file = getBoardBinaryFile("sobel", device);
std::cout << "Using AOCX: " << binary_file << "\n";
program = createProgramFromBinary(context, binary_file.c_str(), &device, 1);
status = clBuildProgram(program, num_devices, &device, "", NULL, NULL);
kernel = clCreateKernel(program, "sobel", &status);
in_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(unsigned int) * rows * cols, NULL, &status);
out_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(unsigned int) * rows * cols, NULL, &status);
int pixels = cols * rows;
status  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &in_buffer);
status |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &out_buffer);
status |= clSetKernelArg(kernel, 2, sizeof(int), &pixels);
checkError(status, "Error: could not set sobel args");

}
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Initialize OpenCL

Create Command Queue

Create Kernel

Create Buffers

Setup Kernel Args.



filter

void filter(unsigned int *output)
{

***
status = clEnqueueWriteBuffer(queue, in_buffer, CL_FALSE, 0, sizeof(unsigned int) * rows * cols, input, 0, NULL, NULL);
***
status = clSetKernelArg(kernel, 3, sizeof(unsigned int), &thresh);
***
status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &sobelSize, &sobelSize, 0, NULL, &event);
***
status  = clFinish(queue);
***

clReleaseEvent(event);

status = clEnqueueReadBuffer(queue, out_buffer, CL_FALSE, 0, sizeof(unsigned int) * rows * cols, output, 0, NULL, NULL);

checkError(status, "Error: could not copy data from device");
status = clFinish(queue);
checkError(status, "Error: could not successfully finish copy");

}
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copy data into device

set sobel threshold

enqueue sobel filter

Blocks until queued OpenCL commands are issued and have 
completed.

copy data from device
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HPP: FPGA

OPENCL+OPENGL
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