
13-1-2016

HPP-Heterogeneous Processing Platform
Computer Vision Using OpenCV/OpenCL Targeting the HPP

Yassine Hariri
Senior Engineer, Platform Design
Hariri@cmc.ca

Hugh W. Pollitt-Smith
Senior System Design Engineer
Pollitt-smith@cmc.ca

Agenda

• Overview
• emSYSCAN Development Systems Update
• HPP: Heterogeneous processing platform
• Computer Vision challenges and opportunities
• OpenCV
• HPP GPU

– OpenCV and CUDA
– Live demo: OpenCV/CUDA targeting the HPP

• HPP FPGA
– OpenCL
– Live demo: OpenCL/OpenGL targeting the HPP

• Q&A

1/13/2016 2

EMSYSCAN DEVELOPMENT

SYSTEMS UPDATE

1/13/2016 3

Microsystems
Rapid-Prototyping,
Characterization
and Integration Labs

4 Universities:
• UBC
• U Manitoba
• Queen’s
• École Polytechnique

Common, Shared Platforms
Interconnected Community of Users
Knowledge Repository
Centralized Management & Operations

License
Management
Server (LMS)

Real-Time
Embedded
Software Lab

University of
Waterloo

Multi-Technology Design
Environment

Development Systems
• System validation and

proof-of-concept demonstration

• System architecture exploration
• Multi-technology simulation
• Design of custom devices for

manufacturing

Development
System

HardwareLicense
Management

Appliance

• Design, analysis,
debug of real-time
software on next-
generation processor
systems

Installed
Design

Environment

Embedded Systems Canada (emSYSCAN)
$54M investment in Canada’s National Design Network
37+ universities, 250+ faculty, 5 years

© 2013, CMC Microsystems
41/13/2016 4

Development Systems for
Proof of Concept

Images courtesy of National Instruments, Xilinx, BEECube,, NVIDIA

1/13/2016 5

• Common set of programmable research platforms with
proof of concept features

• Pooled equipment timeshared among users
• Sharing of knowledge on equipment usage
• Adaptive over time in terms of equipment quantities and

equipment features
• Large community of users, institutions
• Leveraged industrial partners (e.g., STMicro.)

National Research Platform:
Enriched Projects; Results Sooner

National project scope and sizeable outcomes
enabled by centralized project implementation and

management by CMC Microsystems

1/13/2016 6

Installation and usage

• Shared access systems can be accessed at no charge but
require Designer level subscription
– Subscription provides access to support, tools, reference

designs, forums, workshops, travel, select/swap, training,
additional discounts

• Systems delivered on site, remote access
• Designated Development System coordinator(s) at each site

– Communicate institutional needs for purchase
specifications

– Local advocate, information source
– Encourage participation in National Project

1/13/2016 7

emSYSCAN Development
Systems delivered (Gen1)

• Embedded Systems Platform:
– Xilinx ML605, Altera DE4-530

• Advanced Processing Platform
– BEEcube BEE3, BEE4, miniBEE

• Software-Defined Radio Platform
– BEEcube miniBEE, RF daughtercard

• Simulation Acceleration Platform
– Nallatech P385-D5 (Altera Stratix V, OpenCL)

• Multiprocessor Array Platform
– NVIDIA Tesla K20 GPU
– Intel Xeon Phi

• Microsystems Integration Platform
– National Instruments PXI-based, FPGA, MEMS, microfluidics,

RF, photonics features
1/13/2016 8

NDN Development Systems
Community

https://community.cmc.ca/community/development-systems

1/13/2016 9

Upcoming emSYSCAN Development
Systems deployments

• Embedded Systems Platform
– Xilinx Virtex-7, Ultrascale, Zynq options
– Altera Arria 10 and Arria 10 SoC options
– Shipping Q1 2016

• Advanced Processing Platform
– RFP currently in evaluation
– Shipping Q1/Q2 2016

• Software-defined Radio
– BEEcube nano/megaBEE (2x2 up to 16x16 MIMO

options)
– Shipping Q1 2016

1/13/2016 10

emSYSCAN
Wireless Sensor Network Kits

• For researchers interested in topics related to the Internet of Things, healthcare,
smart sensor systems & algorithms & wireless communications.

• Zigbee and Bluetooth based components including:
– IAR Embedded Workbench for ARM Cortex M
– Mpression Odyssey MAX 10 FPGA with Bluetooth
– Freescale Freedom, Beaglebone, Raspberry Pi,
– CC2538DK, CC2650STK, programmers
– 10-port USB Industrial Charger (power source)

• Timeline:
– IAR Embedded Workbench for ARM Cortex-M, dev kits,

& programmers delivered Jan 7, 2016 to 14 universities
– Zigbee connectivity documentation, end of Feb 2016.

• Details at:
– www.cmc.ca | Products & Services |

Development Systems | Sensor Platforms | Wireless Sensor Network Kits

1/13/2016 11

Canada’s National Design Network – ADEPT Management & Operations
Includes software procurement, configuration, installation and delivery. Access and utilization management,
engineering/technical support. Cybersecurity installations, secure testbed assistance and demonstrations. Train-the-
trainer events. Advisory Group coordination. Governance, reporting, legal and financial administration.

32 Institutions

Multi-technology
Interposer

Sensor/
Actuator

Heterogeneous
Embedded

Silicon
Photonics

User Platform 1
Computer-

Aided
Design Tools

…

Compute Servers (Compute Canada)

Accelerators

Design,
compute, store
on local
resources;
secure
download

Secure, remote
access to platforms,
compute infrastructure
(thin client)

ADEPT:

Advanced Design Platform Technology

Fabrication
Process
Repository

Fabrication
Laboratories

Cybersecurity
Testbed

License Management
System

• Lab Capabilities
• Recipe Development
• Prototyping

• Equipment
database

• Recipes
• TCAD

Design Platforms

Observation,
analysis, delivery

Vendors &
Partners

• CAD tools
• Intellectual Property

Blocks & Physical
Design Kits

• Design Methods
• Multi-project wafer

services & scale-up
manufacturing

User accounts,

storage

Advanced
Design

Methods

Intellectual
Property
Blocks &
Physical

Design Kits

Benefiting
Canadians

• Information and
Communications
Technologies

• Healthcare
• Transportation
• Energy

• Manufacturing
• Security Existing

infrastructure

Secure links

Access Infrastructure

1/13/2016 12

HPP Distribution

• Based on Development Systems Coordinator consultations
in April 2014:
– Generation 1 (2014/15): 18 systems

• USask, UQTR, Outaouais, McGill, York, Windsor, Waterloo,
Western, Ottawa, Ryerson, RMC, Victoria

– Generation 2 (2016/17): 12 systems
• Memorial, Guelph, McMaster, Toronto, Polytechnique, UQTR,

Outaouais

1/13/2016 13

HPP: HETEROGENEOUS

PROCESSING PLATFORM

1/13/2016 14

1/13/2016

HPP Project status

Status (12 universities selected 18 systems G1, 7 universities selected 8 G2)

oAssembled, cloned, tested and shipped 18/18 units

Tutorials and reference designs

oQuick start guide : Heterogeneous Parallel Platform (HPP) Available online

oUser Guide: Performance and Power profiling for the HPP Release Date: early Feb. 2016

oComputer vision using OpenCV/OpenCL targeting the HPP- Heterogeneous Processing

Platform Release Date: early Feb. 2016

Webinars series for the HPP

o Introduction to the HPP-Heterogeneous Parallel Platform: A combination of Multicores,

GPUs, FPGAs and Many-cores accelerators (August 26th) Available online

oProgramming models, performance and power profiling for the HPP-Heterogeneous Parallel

Platform (December 2nd) Available online Available online

oComputer vision using OpenCV/OpenCL targeting the HPP- Heterogeneous Processing

Platform (January 13th)

15

HPP fully installed system

1/13/2016 16

Computer Vision

1/13/2016

• What is Computer Vision?
– “Computer vision is the transformation of data from a still or video camera into either a decision or

a new representation”
– ” Learning OpenCV: Computer Vision with the OpenCV Library Paperback – Oct 4 2008

by Gary Bradski (Author), Adrian Kaehler (Author)

• Computer vision is a rapidly growing field for many reasons:
– High quality Cameras availability and low cost,
– Increasing processing power,
– Mature computer vision algorithms.

• Various applications of computer vision, including:
– objects detection, inspection and tracking, lane tracking and pedestrian detection in

automotive, robotic systems, video surveillance, biometrics, augmented reality gaming,
new user interfaces, and many more.

17

Computer Vision challenges and
opportunities

Challenges
• Compute-intensive, therefore require high compute capabilities.
• Many computer-vision scenarios must be executed in real-time

– The processing of a single frame ~30-40 milliseconds.
• In the embedded space, Power consumption is a huge issue

Opportunities
• Build efficient computing architectures

• More transistors per area,
• Make a good use of these transistors

• Parallelization: creating more identical processing units.
• Specialization: building domain-specific hardware accelerators.

• Heterogeneous parallel computing
• The concept of combining these two ideas leads to, heterogeneous computing

combining many-cores CPUs, GPUs, FPGAs together with various accelerators.

1/13/2016 18

Nature is massively parallel

Parallel

Heterogeneous

Efficient

Reliable

1/13/2016 19

Heterogeneous systems

1/13/2016 20

Parallel

Heterogeneous

Efficient

Reliable

Data…
Context…

Computer Vision and
Heterogeneous Computing

• Many high-level tasks consist of both parallel and serial subtasks:
– Parallel subtasks: “embarrassingly parallel,” because they are so easy to parallelize

• Ex. rendering or filtering pixels.

– Serial subtasks: do not parallelize easily, as they contain serial segments where the
results of the later stages depend on the results of earlier stages.

• Ex. Many iterative numerical optimization algorithms, stack-based tree-search

algorithms

• Heterogeneous approach for computer vision applications
– Run “embarrassingly parallel,” tasks on the GPU or FPGA
– Run sequential tasks on the multi-core CPU or FPGA

• Key challenges (Research direction)
– Synchronization between dependent tasks
– The overhead of moving the data between the different processing units

1/13/2016 21

Heterogeneous Systems Architecture

Software stack

GPU FPGA ASIC

Hardware

Multicore
Host CPU

Interconnect

SAP, MPA, HPP

Het. Emb. Proc. Platform

Software applications

1/13/2016 22

HPC

• Open source library for computer vision, image processing and machine

learning

• Permissible BSD license

• Freely available (www.opencv.org)

• Portability

• Real-time computer vision (x86 MMX/SSE, ARM NEON, CUDA)

• C (11 years), now C++ (3 years since v2.0), Python and Java

• Windows, OS X, Linux, Android and iOS

OpenCV

1/13/2016 23

• Usage

– >6 million downloads, > 47,000 user group

– Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota

• Applications
– Street view image stitching

– Automated inspection and surveillance

– Robot and driver-less car navigation and control

– Medical image analysis

– Video/image search and retrieval

– Movies - 3D structure from motion

– Interactive art installations

Usage

1/13/2016 24

• Image/video I/O, processing, display (core, imgproc, highgui)

• Object/feature detection (objdetect, features2d, nonfree)

• Geometry-based monocular or stereo computer vision (calib3d,
stitching, videostab)

• Computational photography (photo, video, superres)

• Machine learning & clustering (ml, flann)

• CUDA and OpenCL GPU acceleration (gpu, ocl)

Functionality

1/13/2016 25

HPP: GPU

OPENCV + CUDA

1/13/2016 26

• Create a directory for OPENCV
– mkdir OPENCV

– cd OPENCV/

• Getting the Cutting-edge OpenCV from the Git Repository
– git clone https://github.com/Itseez/opencv_contrib.git

– cd opencv

• Create a temporary directory where you want to put the generated Makefiles, project

files as well the object files and output binaries:
– mkdir release

– cd release/

• Configuration:
– cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

• Build:
– make

– sudo make install

• Add OpenCV CUDA libraries
– cmake -D WITH_CUDA=ON -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D

INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON
-D WITH_OPEN_GL=ON -D WITH_vtk=ON ..

– sudo make

– sudo make install

Installation of OpenCV on the HPP

1/13/2016 27

• The GPU module is designed as a host-level API
• Set of classes and functions to achieve the best performance with GPUs
• Implemented using NVIDIA* CUDA* Runtime API and supports only

NVIDIA GPUs
• Maintain conceptual consistency with the current CPU functionality
• The OpenCV GPU module includes:

– Utility functions and Low-level vision primitives:
• Provide a powerful infrastructure for developing fast vision algorithms taking

advantage of GPU

– High-level algorithms:
• State-of-the-art algorithms (such as stereo correspondence, face and people

detectors, and others).

OpenCV GPU Module

1/13/2016 28

#include<opencv2/opencv.hpp>
using namespace cv;
int main()
{
Mat src, dst;
src = imread(“test.jpg”, 0);
bilateralFilter(src, dst, -1, 50, 7);
Canny(dst, dst, 0, 30, 3);
imwrite(“out.png”, dst);
}

OpenCV CPU example

1/13/2016

�OpenCV header files

�OpenCV C++ namespace

�Allocate a temp

�Load an image file as grayscale
�Filter the image

�Find the edges, drawn as white pixels

�Store to an image file

29

OpenCV CPU example

1/13/2016

#include<opencv2/opencv.hpp>
using namespace cv;
int main()
{
Mat src, dst;
src = imread(“test.jpg”, 0);
bilateralFilter(src, dst, -1, 50, 7);
Canny(dst, dst, 0, 30, 3);
imwrite(“out.png”, dst);
}

30

#include <opencv2/opencv.hpp> ����OpenCV GPU header file

#include <opencv2/gpu/gpu.hpp>
using namespace cv;
int main() {
Mat src = imread(“test.jpg”, 0);
if (!src.data) exit(1);
gpu::GpuMat d_src(src); ����Upload image from CPU to GPU memory

gpu::GpuMat d_dst; ����Allocate a temp output image on the GPU

gpu::bilateralFilter(d_src, d_dst, -1, 50, 7); ����Process images on the GPU

gpu::Canny(d_dst, d_dst, 0, 30, 3); ����Process images on the GPU

Mat dst(d_dst); ����Download image from GPU to CPU mem

imwrite(“out.png”, dst);
return 0;
}

OpenCV CUDA example

1/13/2016 31

#include <opencv2/opencv.hpp>
#include <opencv2/gpu/gpu.hpp>
using namespace cv;
int main() {
Mat src = imread(“car1080.jpg”, 0);
if (!src.data) exit(1);
gpu::GpuMat d_src(src);
gpu::GpuMat d_dst;
gpu::bilateralFilter(d_src, d_dst, -1, 50, 7);
gpu::Canny(d_dst, d_dst, 35, 200, 3);
Mat dst(d_dst);
imwrite(“out.png”, dst);
return 0;
}

OpenCV CUDA example

1/13/2016 32

• GPU Module Introduction
• Initalization and Information
• Data Structures
• Operations on Matrices
• Per-element Operations
• Image Processing
• Matrix Reductions
• Object Detection
• Feature Detection and Description
• Image Filtering
• Camera Calibration and 3D Reconstruction
• Video Analysis

GPU-accelerated Computer Vision
http://docs.opencv.org/2.4/modules/gpu/doc/gpu.html

1/13/2016 33

• Source Codes are available in: opencv/samples/gpu

• Building and running the hog.cpp

1. Save the original CMakeLists.txt to CMakeLists_original.txt

2. Edit CMakeLists.txt

3. Compile, link and build

4. Run

Building and running OpenCV CUDA
example

1/13/2016

cmake_minimum_required(VERSION 2.8)
project(HogCode)
find_package(OpenCV REQUIRED)
add_executable(HogCode hog.cpp)
target_link_libraries(HogCode ${OpenCV_LIBS})

[root@HPPPrototype gpu]# cmake .
-- The C compiler identification is GNU 4.4.7
-- The CXX compiler identification is GNU 4.4.7
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Found CUDA: /usr/local/cuda-7.0 (found suitable exact version "7.0")
-- Configuring done
-- Generating done
-- Build files have been written to: /root/OPENCV/opencv/samples/gpu
[root@HPPPrototype gpu]# make
Scanning dependencies of target HogCode
[100%] Building CXX object CMakeFiles/HogCode.dir/hog.cpp.o
Linking CXX executable HogCode

[root@HPPPrototype gpu]# ./HogCode road.png --camera 0
Device 0: "Tesla K20c" 4800Mb, sm_35, 2496 cores, Driver/Runtime
ver.7.50/7.0

Controls:
ESC - exit
m - change mode GPU <-> CPU
g - convert image to gray or not
1/q - increase/decrease HOG scale
2/w - increase/decrease levels count
3/e - increase/decrease HOG group threshold
4/r - increase/decrease hit threshold

34

HPP: GPU

OPENCV + CUDA

1/13/2016 35

HPP: FPGA

OPENCL+OPENGL

1/13/2016 36

OpenCL vs. OpenGL

• Unified programming model
– More accessible to the software developers
– Host CPU-FPGA communication
– C based programming language
– Memory Hierarchy auto generated
– Potential to integrate existing VHDL/Verilog IP

• Open Graphics Library (OpenGL)
– Cross-language, cross-platform application programming

interface (API) for rendering 2D and 3D vector graphics.
– The API is typically used to interact with a graphics

processing unit (GPU), to achieve hardware-
accelerated rendering.

1/13/2016 37

OpenCL for FPGA

1/13/2016

White Paper: Implementing FPGA Design with the OpenCL Standard (Figure 4)

38

OpenCL Overview

1/13/2016

White Paper: Implementing FPGA Design with the OpenCL Standard (Page: 7)

39

AOCL design flow steps

1. Intermediate compilation (aoc –c [-g] <your_kernel_filename>.cl)

– Checks for syntatic errors
– Generates a .aoco file without building the hardware configuration file
– Generate estimated resource usage summary <your_kernel_filename>.log

2. Emulation (aoc -g <your_kernel_filename>.cl)

– The AOCL Emulator generates a .aocx file that executes on x86-64 Windows or
Linux host

– Assess the functionality of your OpenCL kernel

3. Profiling (aoc --profile <your_kernel_filename>.cl)

– aocl report <your_kernel_filename>.aocx profile.mon
– Instruct the Altera Offline Compiler to instrument performance counters in the

Verilog code in the .aocx file
– During execution, the performance counters collect performance information

which you can then review in the Profiler GUI.

4. Full deployment

– Execute the .aocx file on the FPGA

1/13/2016 40

Sobel Filter Design Example

int main(int argc, char **argv)
{

imageFilename = (argc > 1) ? argv[1] : "butterflies.ppm";
initGL(argc, argv);

initCL();

input = (cl_uint*)alignedMalloc(sizeof(unsigned int) * rows * cols);
output = (cl_uint*)alignedMalloc(sizeof(unsigned int) * rows * cols);

// Read the image
if (!parse_ppm(imageFilename.c_str(), cols, rows, (unsigned char *)input)) {

std::cerr << "Error: could not load " << argv[1] << std::endl;
teardown();

}
std::cout << "Commands:" << std::endl;
std::cout << " <space> Toggle filter on or off" << std::endl;
std::cout << " -" << std::endl << " Reduce filter threshold" << std::endl;
std::cout << " +" << std::endl << " Increase filter threshold" << std::endl;
std::cout << " =" << std::endl << " Reset filter threshold to default" << std::endl;
std::cout << " q/<enter>/<esc>" << std::endl << " Quit the program" << std::endl;
glutMainLoop();

teardown(0);

}

1/13/2016

Initialize OpenGL

Initialize OpenCL

Allocate Buffers on the HOST

Parsing the image

How to control de app.

GLUT event processing loop

Free the resources

41

initGL

void initGL(int argc, char **argv)
{

glutWindowHandle = glutCreateWindow("Filter");

glutKeyboardFunc(keyboard);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutIdleFunc(idle);
glutTimerFunc(REFRESH_DELAY, timerEvent, 0);

}

1/13/2016

void keyboard(unsigned char key, int, int)
{ switch (key) {

case ' ':

useFilter = !useFilter;
break;

case '=':
thresh = 128;
break;

case '-':
thresh = std::max(thresh - 10, 16u);
break; *** }}

void display()
{

glClear(GL_COLOR_BUFFER_BIT);

if (useFilter) {

filter(output);
glDrawPixels(cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, output

} else {
glDrawPixels(cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, input);

}

}

42

initCL

void initCL()
{

platform = findPlatform("Altera");
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(info), info, NULL);
context = clCreateContext(0, num_devices, &device, NULL, NULL, &status);
queue = clCreateCommandQueue(context, device, 0, &status);
std::string binary_file = getBoardBinaryFile("sobel", device);
std::cout << "Using AOCX: " << binary_file << "\n";
program = createProgramFromBinary(context, binary_file.c_str(), &device, 1);
status = clBuildProgram(program, num_devices, &device, "", NULL, NULL);
kernel = clCreateKernel(program, "sobel", &status);
in_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(unsigned int) * rows * cols, NULL, &status);
out_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(unsigned int) * rows * cols, NULL, &status);
int pixels = cols * rows;
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &in_buffer);
status |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &out_buffer);
status |= clSetKernelArg(kernel, 2, sizeof(int), &pixels);
checkError(status, "Error: could not set sobel args");

}

1/13/2016 43

Initialize OpenCL

Create Command Queue

Create Kernel

Create Buffers

Setup Kernel Args.

filter

void filter(unsigned int *output)
{

status = clEnqueueWriteBuffer(queue, in_buffer, CL_FALSE, 0, sizeof(unsigned int) * rows * cols, input, 0, NULL, NULL);

status = clSetKernelArg(kernel, 3, sizeof(unsigned int), &thresh);

status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &sobelSize, &sobelSize, 0, NULL, &event);

status = clFinish(queue);

clReleaseEvent(event);

status = clEnqueueReadBuffer(queue, out_buffer, CL_FALSE, 0, sizeof(unsigned int) * rows * cols, output, 0, NULL, NULL);

checkError(status, "Error: could not copy data from device");
status = clFinish(queue);
checkError(status, "Error: could not successfully finish copy");

}

1/13/2016

copy data into device

set sobel threshold

enqueue sobel filter

Blocks until queued OpenCL commands are issued and have
completed.

copy data from device

44

1/13/2016

HPP: FPGA

OPENCL+OPENGL

45

1/13/2016

Yassine Hariri
Hariri@cmc.ca

46

