Procedure overview
- Connect fixture to Gain-Phase test port
- Set measurement parameters
- Perform calibration
- Connect DUT then scale measurement trace
- Perform equivalent circuit analysis

In this demo...
- Impedance measurement (Series-thru method, GP port)
- Calibration at the fixture
- Equivalent Circuit Analysis

Required Instrument and fixture
Instrument
E5061B-3L5/005/720 or E5061BEP-NZA (E5061BEP-NZA is the package solution which has all required option for impedance analysis)

In this demo, a 0.1 μF leaded capacitor is measured. You can evaluate other components as well. Also, you can even evaluate SMD(chip) components if you have a test fixture for SMD components (16034E or 16034G).

1. Connect fixture to Gain-Phase test port

2. Set measurement parameters
 a. Press [Preset] then press OK
 Set measurement traces
 b. Press [Display] then press Num of traces, and 2
 Press Allocate Traces and x2
 c. Set measurement parameters
 Press [Meas] then press Impedance analysis menu
 Press Method then press GP Series (T 50 ohm, R 1 Mohm)
 Press |Z|
 Press [Trace Next] to select trace2 then press Cs
 d. Set Y-axis to log scale for trace1
 Press [Trace Next] to select trace1
 Press [Scale] then Y-Axis and Log
 e. Set log sweep parameters
 Press [Sweep Setup] then press Sweep type, and Log Freq
 Press [Start] then enter 100 Hz
 Press [Stop] then enter 30 MHz
 f. Set IF bandwidth
 Press [Avg] then press IFBW AUTO
 Press IFBW Auto Limit and enter 100 Hz

What is the method under impedance analysis menu?
There are several topologies (or methods) to measure impedance depending on the DUT’s impedance range.
With the GP Series (T 50 ohm, R 1 Mohm), Series-thru method at GP (Gain-Phase) port of the E5061B (port impedance: T: 50 ohm, R: 1 Mohm) is used.

In this demo, a 0.1 μF leaded capacitor is measured. You can evaluate other components as well. Also, you can even evaluate SMD(chip) components if you have a test fixture for SMD components (16034E or 16034G).
3. Perform calibration
 a. Select calibration kit
 Press [Cal] then press Cal Kit, and Leaded 50 ohm
 b. Measure calibration standard
 Press [Cal] then press Calibrate
 Press Impedance calibration
 Make open state then press Open
 Make short state then press Short
 Make load state then press Load
 c. Activate calibration
 Press Done

 Refer to following figure to make each state for the standard measurement.

 Open
 Short
 Load
 Nothing
 Insert short bar (equipped with fixture)
 Insert 50 ohm resister

 For load state, use leaded 50 ohm standard (5012-8846) equipped with E5061B-720

4. Connect DUT then scale measurement trace
 a. Connect DUT to the fixture
 b. Press [Scale] then press Auto Scale All

5. Perform equivalent circuit analysis
 a. Select equivalent circuit
 Press [Analysis] then press Equivalent Circuit
 Press Select circuit then press D
 Press Display to turn on analysis
 Press Calculate

 Equivalent circuit is calculated with the specified circuit model and measured impedance value.

 Measured trace and simulated trace can be compared by changing each component’s value. Simulated trace is stored in the Memory trace.

 Which is the right circuit model for my DUT?
 Models for equivalent circuit should be selected depending on the type of the DUT:
 A. Inductors with high core loss
 B. Inductors with high winding resistance or resistors with low resistance value
 C. Resistors with high resistance value
 D. Capacitors
 E. Resistors