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What is CMC and what is its role?

• Not for profit – federally incorporated 1984

• Manages Canada’s National Design Network®

• Delivers micro-nano innovation capabilities across Canada
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Canada’s National Design Network
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Annually:
1200 connected professors

4200 researchers on
professors’ teams

5700 users of computer
aided design tools

300 physical prototypes

80 test equipment loan
items otherwise
unaffordable to users

A Canada-wide collaboration between 66 universities/colleges to connect 10,000
academic participants with 950 companies to design, make and test micro-nanosystem
prototypes. CMC Microsystems manages Canada’s National Design Network®.

3780 publications                                

110 awards

160 patents awarded & applied

500 industrial projects

15 new startups 

780 trained HQP moved to industry in Canada

2017 Outcomes:
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Lowering Barriers to Technology Adoption

CMC delivers key services to 
increase researchers’ and 
companies’ innovation capability 
in Canada:

• Design tools (software)

• Fabrication services to create working prototypes

• Equipment and services for prototype testing

• Platform technologies

• Training, support, networking

• Technology plan and roadmap
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LOWERING BARRIERS TO TECHNOLOGY ADOPTION
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ENGAGING STRATEGICALLY in Canada and worldwide
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CMC Cloud:
Unified Architecture
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Seamless Transition Between Environments

• CAD - Design using CMC Cloud desktop

• FAB -Simulate on the CAD Compute cluster

• LAB - Prototype on the FPGA+GPU cluster
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CMC Cloud: Design Environments

No local CAD server available?
• Complex design tools (e.g. Cadence, Mentor, 

Synopsys), scripts and licensing pre-configured 
and ready

High quality server infrastructure
• Enterprise grade server infrastructure being 

using to run the tools in CMC Cloud

Time from concept to using tools
• After you discover you need to use a tool, with 

CMC Cloud you can be fully utilizing the tools 
within minutes

Immediate access to design flows
• Design flows are developed and supported by 

CMC engineers

www.cmc.ca/CMCCloud

CMC Cloud provides researchers with secure, high-performance, 
remotely accessible EDA resources for design of advanced 
microsystems and nanotechnologies.

©  2019 CMC Microsystems 

http://www.cmc.ca/CMCCloud
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CMC Cloud “mini”-HPC Cluster for CAD

Speed up your simulations

• CMC engineers provide assistance in utilizing the infrastructure as well as domain 

knowledge on utilizing HPC infrastructure 

• Documentation/reference designs available for ANSYS, COMSOL, Xilinx and more

• Uniform array available in standard and large memory configurations

CAD Compute Cluster – 8 nodes

▪ Dual 16-core 2.1-.3.7 GHz CPU

▪ 4 nodes each with 384GB RAM

▪ 4 nodes each with 768GB RAM

▪ 300GB local storage

▪ 100Gb EDR node interconnect / 10GbE storage
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CMC Cloud FPGA/GPU Cluster

CPUs, GPUs and FPGAs in pre-validated cluster to scale 
heterogenous computing workloads

• CMC engineers provide assistance with access and application best practices 

• Hosted and managed by CMC as a cloud resource; accessible at your desktop

• Reference designs using ML as well as heterogeneous computing software stacks

FPGA/GPU Cluster – 8 nodes

▪ Dual 12 core 2.2-to-3.0 GHz CPU

▪ 192 GB RAM

▪ 300 GB local storage

▪ 100 Gb EDR node interconnect

▪ 10 GbE storage network

▪ Xilinx Alveo U200 FPGA

▪ NVIDIA V100 GPU

Config. # of nodes

2 x GPU 3

1 x GPU
1 x FPGA

2

2 x FPGA 3
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Software stack for the FPGA/GPU cluster

Machine Learning

MLOpen
BLAS,FFT, 

RNG
C/C++

Applications

Middleware, 

Tools and Libraries

cuDNN OpenCLPython

Hardware Accelerators

Runtime

Hardware

ML Framework TensorFlowCaffe MXNet

OS

DB Video Finance Genomic

Multicore

Host CPU PCIe
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• Machine learning training and inference (e.g. CNN for object 

detection, speech recognition)

• Quantum chemistry, molecular dynamics, climate and weather, 

Genomics

• Video Processing / Transcoding

• Financial Computing

• Database analytics

• Networking

FPGA/GPU cluster use cases
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End-to-end Deep Learning platform
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Prototype Training

FPGA/GPU cluster

Embedded System

Inference

FPGA/GPU cluster
Desktop



Innovation for Defence Excellence and Security 
(IDEaS) 

A Novel Platform of Artificial Intelligence-based Object Detection, Classification and Tracking Using Heterogeneous 

Computing Architectures. 

©  2019 CMC Microsystems 



• Two webinars posted on CMC’s YouTube channel:

• Accelerating Deep Learning for Vision Using CAFFE (February 27, 2019), 

posted on CMC’s YouTube channel

• Accelerating Deep Learning for Embedded Vision at the Edge (May 22, 

2019)

Previous webinars
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Alveo workloads acceleration
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Ref. Product Brief Xilinx Alveo U200 & U250 



Tesla V100 Acceleration
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Ref. NVIDIA TESLA V100 GPU ARCHITECTURE
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• $CAFFE_ROOT/build/tools

Caffe features 
Data pre-processing and management

Data ingest formats 
• LevelDB, LMDB database 

• HDF5 

• Image files Pre-processing tools 
• LevelDB/LMDB creation from raw images 

• Generation of the Mean-image

• Training and validation set creation with 

shuffling 

Data transformations 
• Image cropping, resizing, scaling and 

mirroring 

• Mean subtraction
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Protobuf model format:

• Developed by Google

• Method of serializing structured data

• Human readable

• Used to define network architecture and training 
parameters

• No coding required!

Caffe features
Deep Learning model definition

layer {

name: "conv2"

type: "Convolution"

bottom: “data"

top: "conv2"

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 256

pad: 2

kernel_size: 5

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}  

}

}
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Caffe features
Deep Learning model definition

Available layer types:

• Convolution

• Pooling

• Normalization

• Data…

Loss functions:

• Classification

• Softmax

• Hinge loss

• Linear regression

• Euclidean loss

• Attributes/multiclassification

• Sigmoid cross entropy 

loss

• and more…

Activation functions:

• ReLU

• Sigmoid

• Tanh

• and more…

Feature Extraction Classification

• Convolution

• Pooling (Max, Average…)

• Activation (ReLu…)

• Fully-connected network

• Matrix multiply

Image

Class IDs. Prob.

©  2019 CMC Microsystems 



• CMC Microsystems

• CMC Cloud FPGA/GPU Cluster

• HW architecture

• SW Stack

• End-to-end Deep Learning platform

• Use Case : CNN training implementation using Caffe:

• Step 1 - Data preparation

• Step 2 – CNN Model definition

• Step 3 - Solver definition

• Step 4 - Model training

• Live Demo

• Training on Tesla V100 GPU

• Inference on Alveo FPGA

• Q&A

Agenda

©  2019 CMC Microsystems 



• Extension of the UC Merced 

archive

• 2100 images 256x256 pixels

• 21 class labels

DLRSD dataset
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• Objective: Create a training and validation databases (from DLRSD dataset) that can be ingested by 
CAFFE. 

• We created two scripts to perform this step:

• Script 1: prepair_images.py 

• copy all images from DLRSD directories to one destination directory, 

• creates train.txt and val.txt required for the training and validation theses text files provide for 
each image file its class.

• Script 2: create_dataset_lmdb.sh 

• resizes all images in the dataset to 227x227 resolution, 

• creates train_lmdb as well as val_lmdb required for training and validation,

• An additional step in the data preparation is the creation of the mean image mean.binaryproto using 
make_mean.sh which is provided by CAFFE.

Step 1 - Data preparation
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Step 1 - Data preparation

prepair_images.py

create_dataset_lmdb.sh 

GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \
$EXAMPLE/train_lmdb
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• Select a CNN architecture and define its parameters in a configuration file 

caffenet_train_val_1.prototxt. 

• In this demo, we will use the bvlc_reference_caffenet model, which is a replication of 

AlexNet. 

• In order to fit this model with the requirement of this project, we need to perform the following 

modifications:

• Update the path for input training data, input validation data as well as the path to the 

mean image.

• Update the outputs of the fully connected layer “fc8” from 1000 to 21.

Step 2 - Model definition
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https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet


• caffenet_train_val_1.prototxt

Step 2 - Model definition

Change the path for 

input data 

and mean image Change the 

number of outputs 

from 1000 to 21

©  2019 CMC Microsystems 



Step 2 - Model definition
printing the model

> python /home/ideas/.local/install/caffe/ python/draw_net.py 
/home/ideas/.local/install/caffe/cmcideas_dev0/caffenet_train_val_1.prototxt
/home/ideas/.local/install/caffe/cmcideas_dev0/caffe_model_1.png
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• The solver provide parameters to perform model optimisation and guide the training and testing 
process.

• The content of solver_1.prototxt is as follow:

Step 3 - Solver definition

net: "/home/ideas/.local/install/caffe/cmcideas_dev0/caffenet_train_val_1.prototxt"

test_iter: 400

test_interval: 500

base_lr: 0.001

lr_policy: "step"

gamma: 0.1

stepsize: 5000

display: 20

max_iter: 10000

momentum: 0.9

weight_decay: 0.0005

snapshot: 2000

snapshot_prefix: "/home/ideas/.local/install/caffe/cmcideas_dev0/caffe_model_1"

solver_mode: GPU
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• At this step, we are ready to train the model by executing the following CAFFE command from the 
terminal:

Step 4 - Model training

>caffe train -solver /home/ideas/.local/install/caffe/cmcideas_dev0/solver_1.prototxt 2>&1 | tee 
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log 

>python /home/ideas/.local/install/caffe/cmcideas_dev0/plot_learning_curve.py 
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log 
/home/ideas/.local/install/caffe/cmcideas_dev0/learning_curve.png

train.log 
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• Figure depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a 
function of the number of iterations. 

Training result

• We observe from this figure that the model achieved a validation accuracy of ~85%, and it 
stopped improving after 4000 iterations. 
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• Issues: 

• CNNs require large datasets and a lot of time to train. 

• Some CNNs could take up to 3-4 weeks to train. 

• Solution: Transfer learning. 

• Concept: Instead of training the network from scratch, transfer learning trains an already trained model 
on a different dataset.

• Fine-tune the trained model: 

• Train the  trained model on the new dataset by continuing the backpropagation. 

• We can either fine-tune the whole network or freeze some of its layers.

Transfer Learning
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• After defining the model and the solver, we can start training the model by executing the command below. 

• Note that we can pass the trained model's weights by using the argument --weights

Model Training with Transfer Learning

> caffe train --solver=/home/ideas/.local/install/caffe/cmcideas_dev0/solver_1.prototxt --weights 
/home/ideas/.local/install/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 2>&1 | tee 
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log
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• This figure  depicts the resulting learning curve, which is a plot of the training loss and test accuracy 
as a function of the number of iterations. 

Training result

• We observe from this figure that the model achieved a validation accuracy of ~98%, and it 
stopped improving after 1000 iterations. 
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• run -it --rm -v /root/scripts/data:/data nvcr.io/nvidia/caffe:19.06-py2

Training on the Tesla V100
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1. Run deviceQuery

2. from /workspace
• ./data/mnist/get_mnist.sh

• ./examples/mnist/create_mnist.sh

3. Run training for CPU, then for GPU 
(examples/mnist/lenet_solver.prototxt)
• ./examples/mnist/train_lenet.sh

Train mnist
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xfDNN Software Stack Overview
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Ref. Accelerating DNNs with Xilinx Alveo Accelerator Cards



Thank you

Yassine Hariri
CMC Microsystems
Kingston, Ontario, Canada
Hariri@cmc.ca
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