# **Get moving with CMC FPGA/GPU Cluster**

YASSINE HARIRI | HARIRI@CMC.CA | SENIOR PLATFORM ENGINEER







# Agenda

- CMC Microsystems
- > AI ML and DL: basic concepts
- > CMC Cloud FPGA/GPU Cluster
  - ➢ HW architecture
  - SW Stack
- > End-to-end Deep Learning platform
- > Use Case : CNN architecture and training implementation using Caffe
- Live Demo
  - Training on Tesla V100 GPU
  - Inference on Alveo FPGA
- ≻ Q&A



# **CMC** Microsystems

Lowering barriers to technology adoption



# **CMC Microsystems**

The services provided by CMC are essential for the research and training required to advance the digital economy:

Industry 4.0, autonomous vehicles, big data, Internet of Things (IoT), cyber defence and security, 5G, quantum computing, artificial intelligence (AI)



### Academic and Industrial Users

- > Not for profit federally incorporated 1984
- > Manages Canada's National Design Network®
- > Delivers micro-nano innovation capabilities



# Canada's National Design Network®

A Canada-wide collaboration between **66** universities/colleges to connect **10,000** academic participants with **950** companies to design, make and test micro-nanosystem prototypes. CMC Microsystems manages Canada's National Design Network<sup>®</sup>.

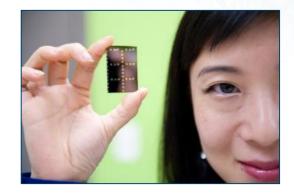
Annually:



# **Lowering Barriers to Technology Adoption**

CMC delivers key services to increase researchers' and companies' innovation capability in Canada:

- Design tools (software)
- > Fabrication services to create working prototypes
- Equipment and services for prototype testing
- Platform technologies
- Training, support, networking
- Technology plan and roadmap



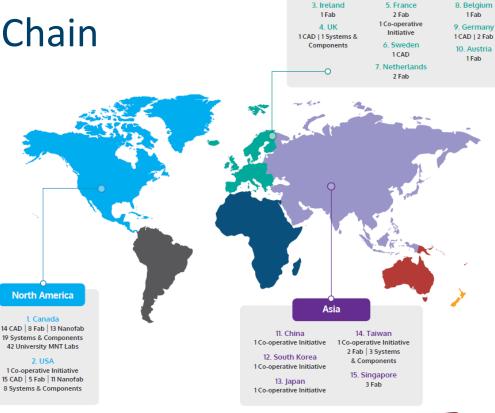


# Industrial Supply Chain

CNDN - Engaging strategically in Canada and worldwide

Global partnerships to support research excellence in Canada

### info@cmc.ca





Europe 1 European Co-operative Initiative

# Discover, Collaborate, Connect

Make CMC your partner on the path to R&D and commercialization

- > Industrial Supply Chain *engaging strategically*
- > R&D collaborations accelerating projects
- > Services for emerging processes and products *connecting to early adopters*
- > SponsorChip enhancing your research efforts

Products & services: keeping researchers at the leading edge

- > CAD FAB LAB and more...
- > Visit: <u>www.cmc.ca/SuccessStories</u>





# From idea to manufacturable prototype



CMC Cloud (✓) User guides, application notes, training

materials and courses

CMC.ca/CAD





Services for making working prototypes

- Multi-project wafer services with affordable access to foundries worldwide
- Fabrication and travel assistance to prototype at a university-based lab
- Value-added packaging and assembly services
- In-house expertise for first-time-right prototypes

### 🕒 CMC.ca/FAB





Device validation to system demonstration

- Access to platform-based microsystems design and prototyping environments
- Access to test equipment on loan
- Access to contract engineering services

### CMC.ca/LAB



# CAD State-of-the-art environments for successful design | www.cmc.ca/CAD



# CAD

 $\begin{array}{l} {\rm Over} \ 500 \ {\rm CAD} \ {\rm tools} \\ {\rm and} \ {\rm modules} \end{array}$ 

Over **5000** individual users annually

PDK, training, support



# FAB

### Services for making working prototypes | www.cmc.ca/FAB



multi-project wafer services available through nine foundries worldwide, offering industrial-scale manufacturing



# Global supply chain

- > Advanced technology access to microelectronics, photonics, optoelectronics, MEMS, microfluidics, and embedded systems technology including TSMC, GlobalFoundries, AMF, IBM, and STMicroelectronics.
- > CMC is channel partner for GlobalFoundries in North America.





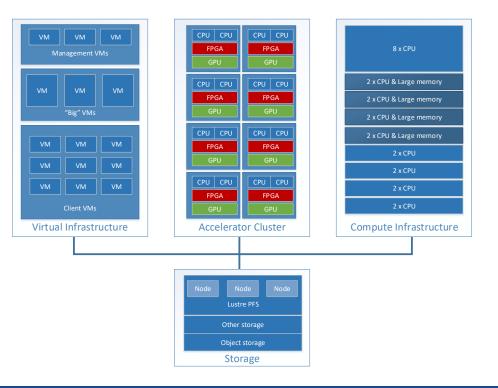
# LAB

### Device validation to system demonstration | www.cmc.ca/LAB



# **CMC Cloud: Unified Architecture**





### **Seamless Transition Between Environments**

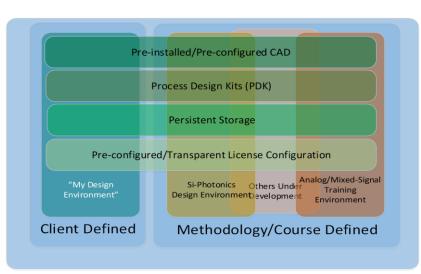
- **CAD** Design using CMC Cloud desktop
- FAB Simulate on the CAD Compute cluster
- **LAB** Prototype on the FPGA+GPU cluster

## **CMC Cloud: Design Environments**





**CMC Cloud** provides researchers with secure, high-performance, remotely accessible EDA resources for design of advanced microsystems and nanotechnologies.



### No local CAD server available?

 Complex design tools (e.g. Cadence, Mentor, Synopsys), scripts and licensing pre-configured and ready

### **High quality server infrastructure**

• Enterprise grade server infrastructure being using to run the tools in CMC Cloud

### Time from concept to using tools

• After you discover you need to use a tool, with CMC Cloud you can be fully utilizing the tools within minutes

### Immediate access to design flows

 Design flows are developed and supported by CMC engineers

www.cmc.ca/CMCCloud

# CMC Cloud "mini"-HPC Cluster for CAD



### Speed up your simulations

- CMC engineers provide assistance in utilizing the infrastructure as well as domain knowledge on utilizing HPC infrastructure
- Documentation/reference designs available for ANSYS, COMSOL, Xilinx and more
- Uniform array available in standard and large memory configurations



### CAD Compute Cluster – 8 nodes

- Dual 16-core 2.1-.3.7 GHz CPU
- 4 nodes each with 384GB RAM
- 4 nodes each with 768GB RAM
- 300GB local storage
- 100Gb EDR node interconnect / 10GbE storage

# CMC Cloud FPGA/GPU Cluster

- > CPUs, GPUs and FPGAs in pre-validated cluster to scale heterogenous computing workloads
  - Machine learning training and inference (e.g. CNN for object detection, speech recognition)
  - Video Processing / Transcoding, Financial Computing, Database analytics, Networking
  - > Quantum chemistry, molecular dynamics, climate and weather, Genomics
  - RISC-V Accelerators in Open Source Cloud Computing

# Aveo U20

Cluster HW

# FPGA/GPU cluster Specifications

### **Cluster Configuration**

|     | Environment     | Description       | # Nodes |
|-----|-----------------|-------------------|---------|
| 100 | Accel - Cerebro | 2 Alveo FPGA U200 | 3       |
|     | Accel - Genisys | 2 V100 GPUs       | 3       |
|     | Accel - Synergy | 1 Alveo FPGA U200 | 2       |
|     |                 | 1 V100 GPU        |         |

### **1 Node Specifications**

Dual 12 core 3.0 GHz CPU 192 GB RAM 300 GB local storage 100 Gb EDR node interconnect 10 GbE storage network



# Research in the public cloud

CMC Microsystems offers members of the Cadence<sup>®</sup> University Software Program access to leading-edge technology through the Cadence Cloud Passport program

### **Cloud Passport:**

- > Cadence in public cloud
- Fully configured and installed: on-demand, continuous software updates, zero admin costs
- > Access high-performance design lab anywhere



### **Related CMC Services:**

- Training courses, webinars, and documentation
- > PDKs from CMC suppliers
- > CMC's fabrication services (DRC and MPW)
- > Cadence license management



# AI ML and DL



# Al: Area of Specialization

- > Transforming almost every business
- > Exploding ecosystem of tools, making it more accessible to even non-experts
- Area of Specialization
  - ➤ Gaming
  - Natural Language Processing
  - Computer Vision
  - Robotics

≻ ...

Autonomous Cars







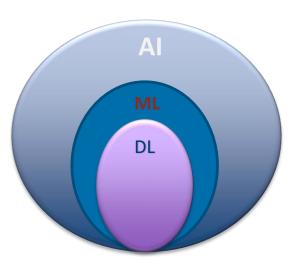






# AI and Machine Learning

AI: The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. *–Source oxfordreference.com* 



- AI: Artificial Intelligence
  - Sense, reason, act and adapt
- ML: Machine Learning
  - Algorithms that improve as they are exposed to data over time
- DL: Deep Learning
  - Multilayered neural networks learn from vast amounts of data
- DL Training:

Using a set of training sample data to determine the optimal weights of the artificial neurons in a DNN.

- DL Inference:
  - Analyzing specific data using a previously trained DNN.

Source: What's the Difference Between Artificial Intelligence (AI), Machine Learning, and Deep Learning? by <u>Glenn Evan Touger</u>

- After a neural **network** is trained, it is deployed to run **inference**:
  - to classify, recognize, and process new inputs.



# Rise in popularity of deep learning

- > Key enablers:
  - Greater availability of large data sets, containing more training examples
  - Availability and Efficient use of accelerators such as GPUs, FPGAs and custom hardware such as Tensor Processor to train deep learning models
  - New ML techniques (Deep Neaural Networks) and Open source machine learning flow, as well as ML libraries

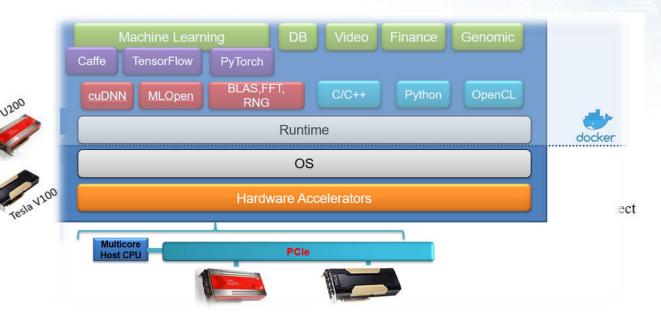


# FPGA/GPU cluster HW and SW Specifications

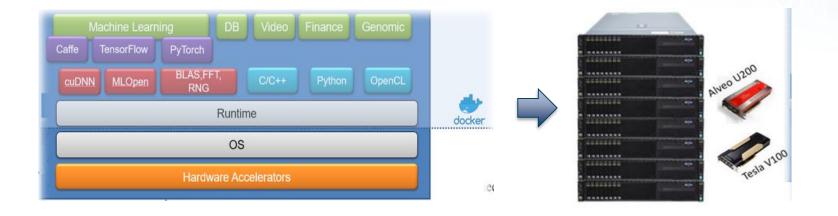


# CMC Cloud FPGA/GPU Cluster

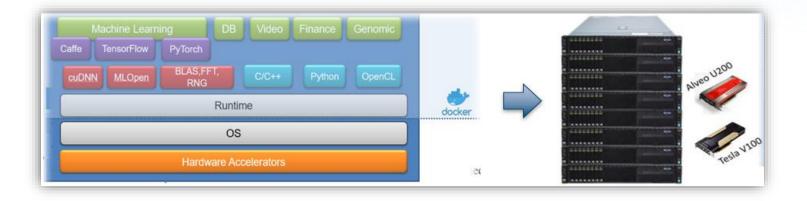














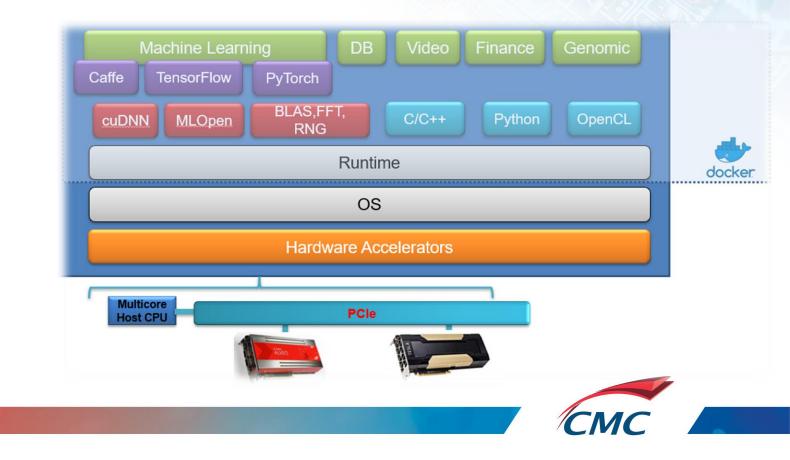
# Software stack for the FPGA/GPU cluster

Applications

**ML Framework** 

Middleware, Tools and Libraries

Hardware



# End-to-end Deep Learning platform

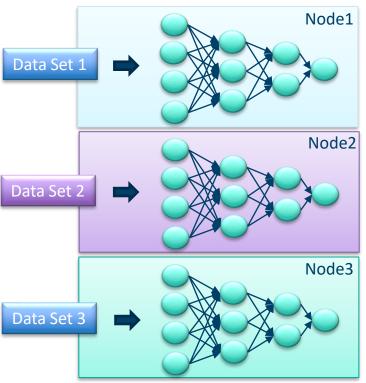
FPGA/GPU cluster

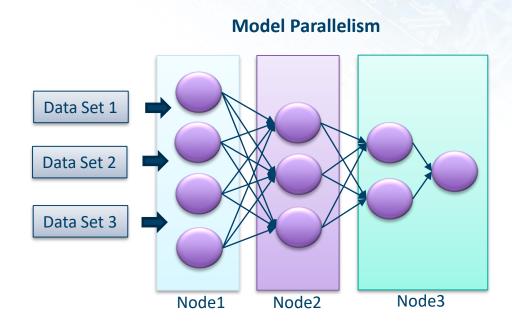




# Scale-out for Training and Inference

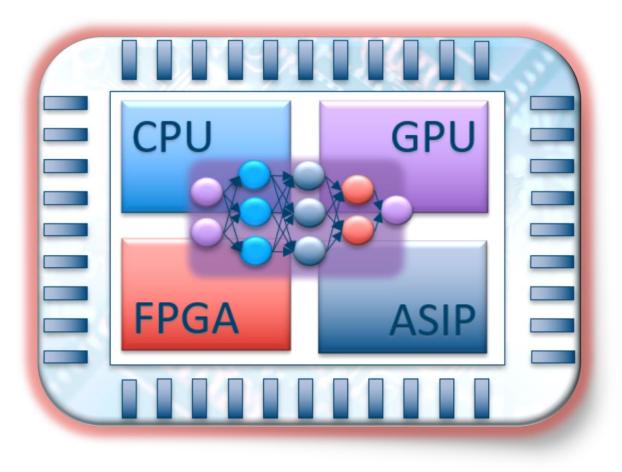
### **Data Parallelism**



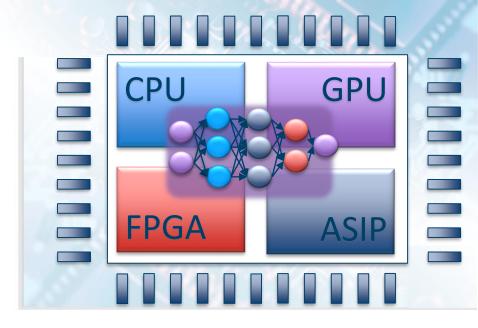




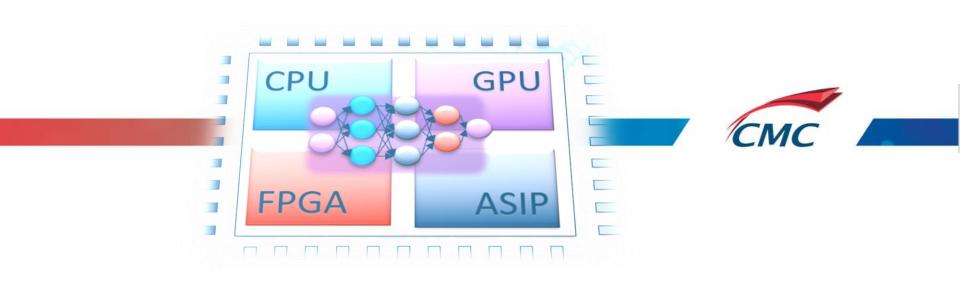


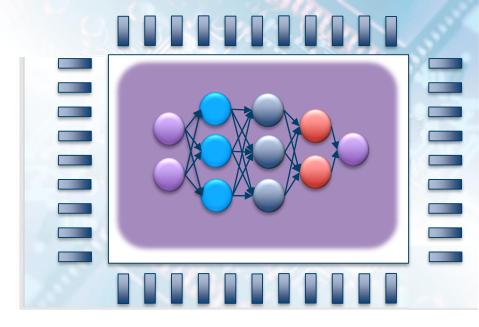




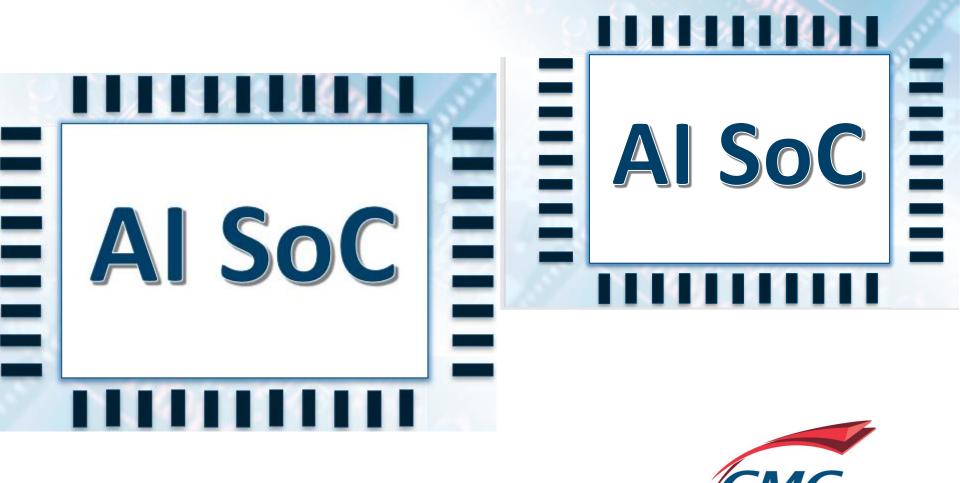




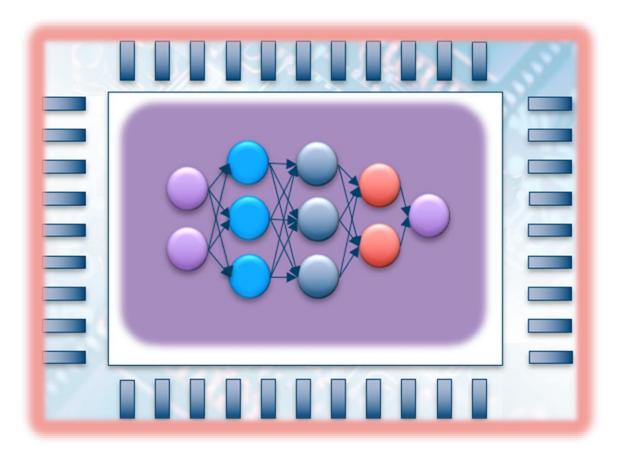












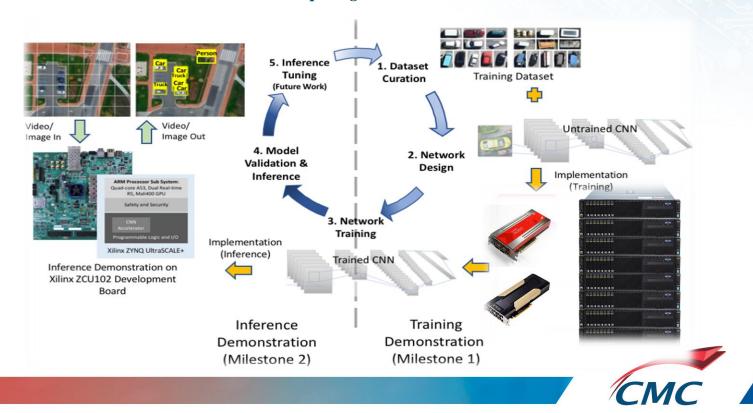
# End-to-end Deep Learning platform

## Use case

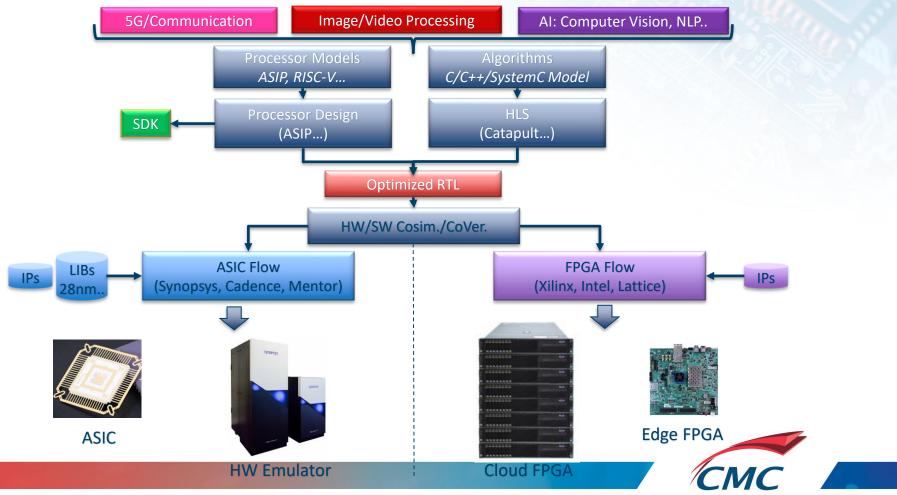


## Innovation for Defence Excellence and Security (IDEaS)

A Novel Platform of Artificial Intelligence-based Object Detection, Classification and Tracking Using Heterogeneous Computing Architectures.



#### A Unified Design Flow for Advanced Computing Platforms



## Alveo workloads acceleration

| AREA                           | PARTNER WORKLOAD                            | ALVEO ACCELERATION VS CPU |  |
|--------------------------------|---------------------------------------------|---------------------------|--|
| Database Search and Analytics  | BlackLynx Unstructured Data Elasticsearch   | 90X                       |  |
| Financial Computing            | Maxeler Value-at-Risk (VAR) Calculation     | 89X                       |  |
| Machine Learning               | Xilinx Real-Time Machine Learning Inference | 20X                       |  |
| Video Processing / Transcoding | NGCodec HEVC Video Encoding                 | 12X                       |  |
| Genomics                       | Falcon Computing Genome Sequencing          | 10X                       |  |

#### *Ref. Product Brief Xilinx Alveo U200 & U250*



## **Tesla V100 Acceleration**



Ref. NVIDIA TESLA V100 GPU ARCHITECTURE



# CAFFE Framework Basic concepts



# Caffe features

# Data pre-processing and management

### \$CAFFE\_ROOT/build/tools

#### Data ingest formats

- LevelDB, LMDB database
- HDF5
- Image files

#### **Pre-processing tools**

- LevelDB/LMDB creation from raw images
- Generation of the Mean-image
- Training and validation set creation with shuffling

#### **Data transformations**

- Image cropping, resizing, scaling and mirroring
- Mean subtraction



# Caffe features Deep Learning model definition

- Protobuf model format:
  - Developed by Google
  - Method of serializing structured data
  - Human readable
  - Used to define network architecture and training parameters
  - No coding required!

```
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "data"
  top: "conv2"
param {
    lr mult: 2
    decay mult: 0
  convolution param {
    num output: 256
    pad: 2
    kernel size: 5
    group: 2
    weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
      value: 1
```



# Caffe features Deep Learning model definition

#### Loss functions:

- Classification
  - Softmax
  - Hinge loss
- Linear regression
  - Euclidean loss
- Attributes/multiclassification
  - Sigmoid cross entropy loss
- and more...

Image

#### Available layer types:

- Convolution
- Pooling
- Normalization
- Data...

Feature Extraction

Activation (ReLu...)

Pooling (Max, Average...)

Convolution

#### Activation functions:

Class IDs. Prob.

- ReLU
- Sigmoid
- Tanh

Classification

Fully-connected network

Matrix multiply

• and more...

og (0.01)

(0.04) boat (0.94) bird (0.01

# **CAFFE** Framework

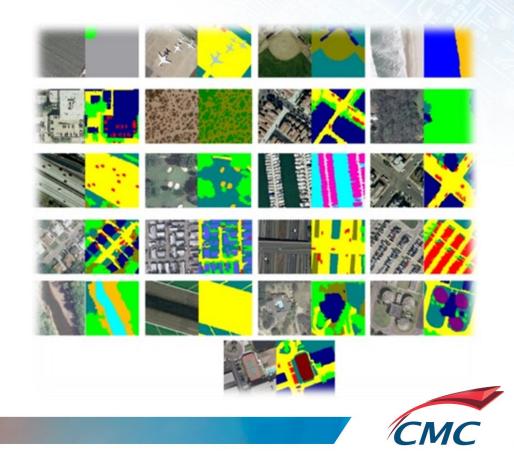
Use Case : CNN architecture and training implementation



## **DLRSD** dataset



#### 2100 images 256x256 pixels, 21 class labels



## Step 1 - Data preparation

Objective: Create a training and validation databases (from DLRSD dataset) that can be ingested by CAFFE.

We created two scripts to perform this step:

#### Script 1: prepair\_images.py

- > copy all images from DLRSD directories to one destination directory,
- > creates *train.txt* and *val.txt* required for the training and validation theses text files provide for each image file its class.

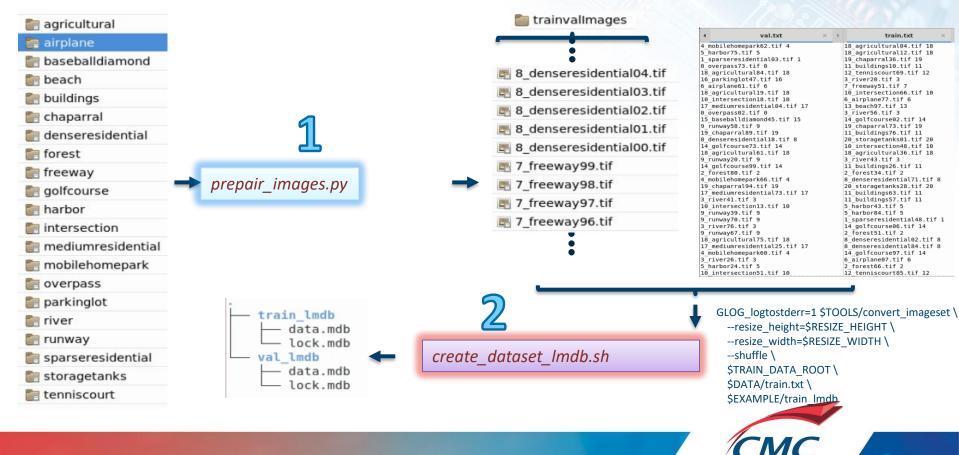
#### Script 2: create\_dataset\_Imdb.sh

- > resizes all images in the dataset to 227x227 resolution,
- > creates *train\_Imdb* as well as *val\_Imdb* required for training and validation,

An additional step in the data preparation is the creation of the mean image *mean.binaryproto* using *make\_mean.sh* which is provided by CAFFE.



## Step 1 - Data preparation

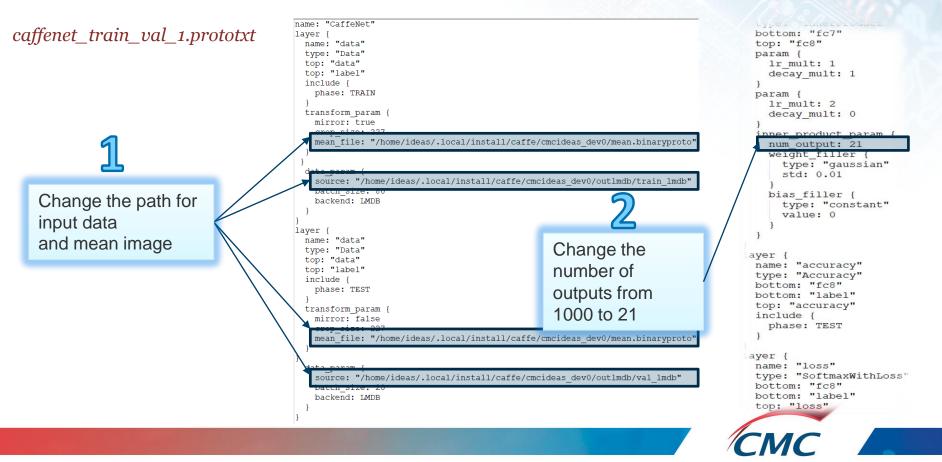


## Step 2 - Model definition

- Select a CNN architecture and define its parameters in a configuration file *caffenet\_train\_val\_1.prototxt*.
- In this demo, we will use the <u>bvlc reference caffenet</u> model, which is a replication of AlexNet.
- In order to fit this model with the requirement of this project, we need to perform the following modifications:
  - Update the path for input training data, input validation data as well as the path to the mean image.
  - Update the outputs of the fully connected layer "fc8" from 1000 to 21.

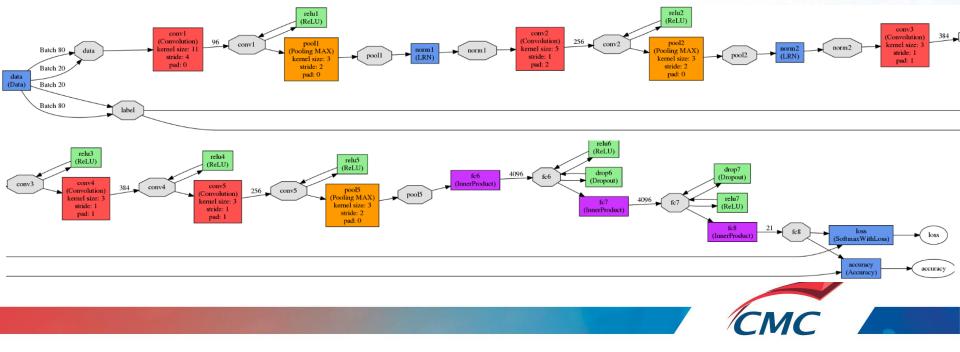


# Step 2 - Model definition



# Step 2 - Model definition printing the model

> python /home/ideas/.local/install/caffe/ python/draw\_net.py /home/ideas/.local/install/caffe/cmcideas\_dev0/caffenet\_train\_val\_1.prototxt /home/ideas/.local/install/caffe/cmcideas\_dev0/caffe\_model\_1.png



## Step 3 - Solver definition

- The solvenpmerideap area and testing process. test\_iter: 400
- The continue of solo er\_1. prototxt is as follow:

base\_lr: 0.001 lr\_policy: "step" gamma: 0.1 stepsize: 5000 display: 20 max\_iter: 10000 momentum: 0.9 weight\_decay: 0.0005 snapshot: 2000 snapshot\_prefix: "/home/ideas/.local/install/caffe/cmcideas\_dev0/caffe\_model\_1" solver\_mode: <u>GPU</u>



## Step 4 - Model training

At this step, we are ready to train the model by executing the following CAFFE command from the terminal:

>caffe train solver /home/ideas/.local/install/caffe/cmcideas\_dev0/solver\_1.prototxt 2>&1 | tee /home/ideas/.local/install/caffe/cmcideas\_dev0/train.log

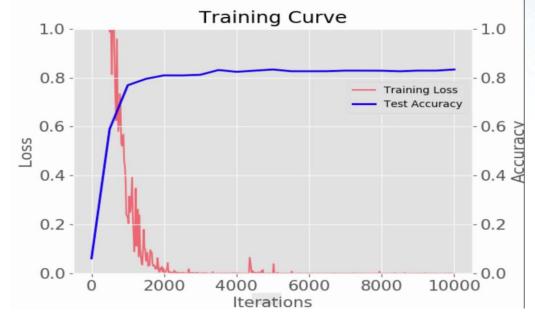
| train.log | Γ | 205 11:13:50.180753 23320 sgd_solver.cpp:105] Iteration 3900, lr = 0.001                     |                                 |
|-----------|---|----------------------------------------------------------------------------------------------|---------------------------------|
|           |   | 205 11:13:50.365981 23326 data layer.cpp:73] Restarting data prefetching from start.         |                                 |
|           |   | 205 11:13:53.088064 23320 solver.cpp:218] Iteration 3920 (6.87914 iter/s, 2.90734s/20 iters) | , loss = 5.28497e-05            |
|           |   | 205 11:13:53.088107 23320 solver.cpp:237] Train net output #0: loss = 5.27813e-05 (* 1 =     | 5.27813e-05 loss)               |
|           |   | 205 11:13:53.088116 23320 sgd_solver.cpp:105] Iteration 3920, lr = 0.001                     |                                 |
|           |   | 205 11:13:53.418174 23326 data layer.cpp:73] Restarting data prefetching from start.         |                                 |
|           |   | 205 11:13:55.995802 23320 solver.cpp:218] Iteration 3940 (6.87827 iter/s, 2.90771s/20 iters) | , loss = 0.000599943            |
|           |   | 205 11:13:55.995854 23320 solver.cpp:237] Train net output #0: loss = 0.000599875 (* 1 =     | 0.000599875 loss)               |
|           |   | 205 11:13:55.995863 23320 sgd solver.cpp:105] Iteration 3940, lr = 0.001                     |                                 |
|           | 1 | 205 11:13:56.472354 23326 data layer.cpp:73] Restarting data prefetching from start.         |                                 |
|           |   | 205 11:13:58.904565 23320 solver.cpp:218] Iteration 3960 (6.876 iter/s, 2.90867s/20 iters),  | loss = 0.000147462              |
|           |   | 205 11:13:58.904662 23320 solver.cpp:237] Train net output #0: loss = 0.000147394 (* 1 =     | 0.000147394 loss)               |
|           |   | 205 11:13:58.904672 23320 sgd solver.cpp:105] Iteration 3960, lr = 0.001                     |                                 |
|           |   | 205 11:13:59.525619 23326 data layer.cpp:73] Restarting data prefetching from start.         |                                 |
|           |   | 205 11:14:01.812296 23320 solver.cpp:218] Iteration 3980 (6.87841 iter/s, 2.90765s/20 iters) | , loss = 0.000356035            |
|           |   | 205 11:14:01.812355 23320 solver.cpp:237] Train net output #0: loss = 0.000355967 (* 1 =     | 0.000355967 loss)               |
|           |   | 205 11:14:01.812364 23320 sgd_solver.cpp:105] Iteration 3980, lr = 0.001                     |                                 |
|           |   | 205 11:14:02.579222 23326 data layer.cpp:73] Restarting data prefetching from start.         |                                 |
|           |   | 205 11:14:04.524401 23320 solver.cpp:447] Snapshotting to binary proto file /home/ideas/.loc | al/install/caffe/cmcideas dev0/ |
|           | L | ffe_model_1_iter_4000.caffemodel                                                             | _                               |

>python /home/ideas/.local/install/caffe/cmcideas\_dev0/plot\_learning\_curve.py
/home/ideas/.local/install/caffe/cmcideas\_dev0/train.log
/home/ideas/.local/install/caffe/cmcideas\_dev0/learning\_curve.png



# Training result

Figure depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a function of the number of iterations.



We observe from this figure that the model achieved a validation accuracy of <u>~85%</u>, and it stopped improving after 4000 iterations.

## **Transfer Learning**

- Issues:
  - > CNNs require large datasets and a lot of time to train.
  - Some CNNs could take up to 3-4 weeks to train.
- Solution: Transfer learning.
- Concept: Instead of training the network from scratch, transfer learning trains an already trained model on a different dataset.
  - Fine-tune the trained model:
    - > Train the trained model on the new dataset by continuing the backpropagation.
    - > We can either fine-tune the whole network or freeze some of its layers.



## Model Training with Transfer Learning

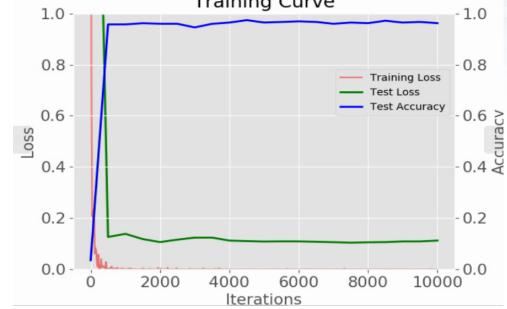
- > After defining the model and the solver, we can start training the model by executing the command below.
- > Note that we can pass the trained model's weights by using the argument --weights

> caffe train --solver=/home/ideas/.local/install/caffe/cmcideas\_dev0/solver\_1.prototxt --weights /home/ideas/.local/install/caffe/models/bvlc\_reference\_caffenet/bvlc\_reference\_caffenet.caffemodel 2>&1 | tee /home/ideas/.local/install/caffe/cmcideas\_dev0/train.log



## Training result

This figure depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a function of the number of iterations. Training Curve

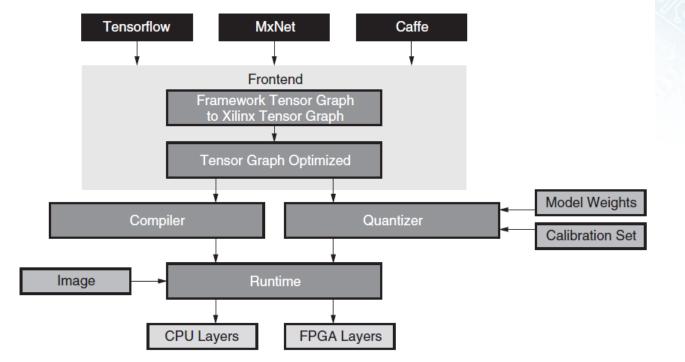


We observe from this figure that the model achieved a validation accuracy of <u>~98%</u>, and it stopped improving after 1000 iterations.





# xfDNN Software Stack Overview



Ref. Accelerating DNN: with Xilinx Alveo Accelerator Cards

# Thank you

Yassine Hariri <u>Hariri@cmc.ca</u>





