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CMC Microsystems

Lowering barriers to technology adoption
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CMC Microsystems

The services provided by CMC are
essential for the research and training
required to advance the digital

economy: Academic and Industrial Users
Industry 4.0, autonomous vehicles, big > Not for profit — federally incorporated 1984
data, Internet of Things (loT), cyber > Manages Canada’s National Design Network®

defence and security, 5G, quantum

_ i . > Delivers micro-nano innovation capabilities
computing, artificial intelligence (Al)
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Canada’s National Design Network®

A Canada-wide collaboration between 66 universities/colleges to connect 10,000 academic participants with
950 companies to design, make and test micro-nanosystem prototypes. CMC Microsystems manages Canada’s

National Design Network®.

@ Post-secondary institutions

Collaborating companies British Columbia

@ Companies manufacturing @

) Alberta
micro-nanosystems

@ @ Saskatchewan e
@ Ontario
©) %
500 industrial projects

15 new startups

products in Canada

2017 Outcomes:

000,

3780 publications
110 awards

160 patents awarded & applied 780 trained HQP moved to industry in Canada

Newfoundland
and Labrador

®
O,

Quebec

PEI

©

New Nova
Brunswick Scotia

@) ")
a @©

©0/0

Annually:

1200 connected
professors

4200 researchers on
professors’ teams

5700 users of computer
aided design tools

300 physical prototypes

80 test equipment loan
items otherwise
unaffordable to users
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Lowering Barriers to Technology Adoption

CMC delivers key services to increase researchers’ and

companies’ innovation capability in Canada:

» Design tools (software)
» Fabrication services to create working prototypes
» Equipment and services for prototype testing

» Platform technologies

» Training, support, networking

» Technology plan and roadmap




Europe 1 European Co-operative Initiative

3. Ireland 5. France 8. Belgium
. . 1Fab 2 Fab 1Fab
| I 4. UK Kn!::aﬁ“ 9_Germany
us rla u a I l I 1CAD | 1Systems & ntative 1CAD | 2 Fab
Components &. Sweden 10. Austria
1CAD
1Fab

7. Netherlands
2 Fab

CNDN - Engaging strategically
in Canada and worldwide

Global partnerships to support
research excellence in Canada

0
North America
1. Canada
14 CAD | 8 Fab | 13 Nanofab
19 Sysu‘:ms& Clum a::n‘:s 1. China 14. Taiwan
i n " 1 Co-operative Initiati 1Co-op i litiati
. 42 University MNT Labs
f 2 Fab | 3 Systems
INTO CMmc.Ca 2 USA L ST LT & Companents
1 Co-operative Initiative 1 Co-operative Initiative e
15 CAD | 5Fab | 1l Nanofab . Singapore
13. Japan 3Fab
B Systems & Components

1 Co-operative Initiative
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Discover, Collaborate, Connect

Make CMC your partner on the path to R&D and commercialization

> Industrial Supply Chain - engaging strategically
> R&D collaborations - accelerating projects

> Services for emerging processes and products - connecting to early adopters

> SponsorChip - enhancing your research efforts
Products & services: keeping researchers at the leading edge

> CAD - FAB - LAB - and more...

> Visit: www.cmc.ca/SuccessStories

] November 1,2019 | www.CMC.ca



https://www.cmc.ca/successstories/

From idea to manufacturable prototype

Al

State-of-the-art environments Services for making working (i Device validation to system
» 0
for successful design prototypes 7 v demonstration
@ Selection of high-performance Computer @/ Multi-project wafer services with (& Access to platform-based microsystems
Aided Design (CAD) tools and design affordable access to foundries worldwide

design and prototyping environments
environments

Q

Fabrication and travel assistance to @ Access to test equipment on loan

Available via desktop or through prototype at a university-based lab

CMC Cloud

Q
Q

Value-added packaging and assembly @ Access to contract engineering services

User guides, application notes, training CARicas

materials and courses

Q

In-house expertise for first-time-right
prototypes

[*] CMC.ca/CAD [*] CMC.ca/FAB [*] CMC.ca/LAB

Q
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http://www.cmc.ca/CAD
http://www.cmc.ca/FAB
http://www.cmc.ca/LAB

CAD

State-of-the-art environments for successful design | www.cmec.ca/CAD
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CAD

Over 500 CAD tools
and modules

Over 5 00O individual
users annually

PDK, training, support

November 1,2019 | www.CMC.ca
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FAB

Services for making working prototypes | www.cmc.ca/FAB

25

multi-project wafer services
available through nine foundries
worldwide, offering industrial-scale
manufacturing
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14

Global supply chain

> Advanced technology access to microelectronics, photonics, optoelectronics, MEMS,
microfluidics, and embedded systems technology including TSMC, GlobalFoundries,
AMF, IBM, and STMicroelectronics.

> CMCis channel partner for GlobalFoundries in North America.
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http://www.cadence.com/

LAB

Device validation to system demonstration | www.cmc.ca/LAB
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CMC Cloud:
Unified Architecture CMC

MICROSYSTEMS

Seamless Transition Between Environments

2 xCPU & Large memory

FPGA FPGA 2 x CPU & Large memory

* CAD - Design using CMC Cloud desktop

2 xCPU & Large memory

2 xCPU & Large memory

FPGA FPGA
2xCPU

* FAB - Simulate on the CAD Compute cluster

2xCPU

:

 LAB - Prototype on the FPGA+GPU cluster

Virtual Infrastructure Accelerator Cluster Compute Infrastructure

Lustre PFS

Other storage
Object storage

Storage

CMC Cloud



CMC Cloud: Design Environments /C'MC

%gg'g MICROSYSTEMS
O™ . . .
3 CMC Cloud provides researchers with secure, high-performance,

remotely accessible EDA resources for design of advanced
P microsystems and nanotechnologies.

No local CAD server available?

e Complex design tools (e.g. Cadence, Mentor,
Synopsys), scripts and licensing pre-configured
and ready

High quality server infrastructure
*  Enterprise grade server infrastructure being
using to run the tools in CMC Cloud

Time from concept to using tools
e After you discover you need to use a tool, with
CMC Cloud you can be fully utilizing the tools
within minutes
“My Design
SOVESRMERE Immediate access to design flows
*  Design flows are developed and supported by

Client Defined Methodology/Course Defined CMC engineers

www.cmc.ca/CMCCloud

© 2019 CMC Microsystems



http://www.cmc.ca/CMCCloud

CMC Cloud “mini”-HPC Cluster for CAD //

CMC

MICROSYSTEMS

Speed up your simulations

* CMC engineers provide assistance in utilizing the infrastructure as well as domain
knowledge on utilizing HPC infrastructure

* Documentation/reference designs available for ANSYS, COMSOL, Xilinx and more

* Uniform array available in standard and large memory configurations

CAD Compute Cluster — 8 nodes

= Dual 16-core 2.1-.3.7 GHz CPU

» 4 nodes each with 384GB RAM

= 4 nodes each with 768GB RAM

= 300GB local storage

= 100Gb EDR node interconnect / 10GbE storage

© 2019 CMC Microsystems



CMC Cloud FPGA/GPU Cluster

» CPUs, GPUs and FPGAs in pre-validated cluster to scale heterogenous computing workloads
» Machine learning training and inference (e.g. CNN for object detection, speech recognition)
» Video Processing / Transcoding, Financial Computing, Database analytics, Networking
» Quantum chemistry, molecular dynamics, climate and weather, Genomics
» RISC-V Accelerators in Open Source Cloud Computing

Cluster HW

FPGA/GPU cluster Specifications

Cluster Configuration

O
S
' o 2 Description
A v\“? w 1 Node Specifications

Accel - Cerebro 2 Alveo FPGA U200 Dual 12 core 3.0 GHz CPU

& Accel - Genisys 2 V100 GPUs 3 192 GB RAM
o
o

o 300 GB local storage
<2 Accel - Synergy 1 Alveo FPGATU200 5 100 Gb EDR node interconnect
1 V100 GPU 10 GbE storage network

S e ely



Research in the public cloud

- ®
cadence
CLOUD PASSPORT
PARTNER PROGRAM

CMC Microsystems offers members of the
Cadence” University Software Program
access to leading-edge technology through
the Cadence Cloud Passport program

S—

A Azure 50
CLOUD PASSPORT

Cloud Passport: Related CMC Services:

> Cadence in public cloud > Training courses, webinars, and

> Fully configured and installed: documentation

on-demand, continuous software updates, > PDKs from CMC suppliers
zero admin costs > CMC’s fabrication services (DRC and MPW)
> Access high-performance design lab anywhere > Cadence license management

November 1,2019 | www.CMC.ca 7‘ M‘ -



Al ML and DL
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Al: Area of Specialization

» Transforming almost every business
» Exploding ecosystem of tools, making it more accessible to even non-experts
» Area of Specialization
» Gaming
» Natural Language Processing
» Computer Vision
What can  help you with?

> Robotics

» Autonomous Cars

> ..




Al and Machine Learning

AI: The theory and development of computer systems able to perform tasks normally requiring
human intelligence, such as visual perception, speech recognition, decision-making, and translation
between languages. —Source oxfordreference.com

* Al Artificial Intelligence

N * Sense, reason, act and adapt
R * ML: Machine Learning

* Algorithms that improve as they are exposed to data over time

* DL: Deep Learning
* Multilayered neural networks learn from vast amounts of data
* DL Training:
Using a set of training sample data to determine the optimal weights of the
artificial neurons in a DNN.
* DL Inference:

* Analyzing specific data using a previously trained DNN.

Source: What's the Difference Between Artificial Intelligence (Al), Machine Learning, and Deep Learning?
by Glenn Evan Touger

« After a neural network is trained, it is deployed to run inference:

* to classii| recoinize| and irocess new iniuts. /‘


http://www.prowesscorp.com/author/glenn-touger/

Rise in popularity of deep learning

» Key enablers:
» Greater availability of large data sets, containing more training examples
» Availability and Efficient use of accelerators such as GPUs, FPGAs and custom hardware such as
Tensor Processor to train deep learning models
» New ML techniques (Deep Neaural Networks) and Open source machine learning flow, as well

as ML libraries

EETT 20T v A



FPGA/GPU cluster HW and SW Specifications
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CMC Cloud FPGA/GPU Cluster

Cluster HW

Caffe TensorFlow PyTorch

BLAS FFT,
RNG

Hardware Accelerators

cuDNN MLOpen C/C++ Python OpenCL




Caffe ~ TensorFlow PyTorch

~ BOASFFFT,

RNG Sk

cuDNN = MLOpen

Hardware Accelerators

27 November 1,2019 | www.CMC.ca ‘ M‘ -



Caffe TensorFlow PyTorch

cuDNN MLOpe; BLQSN'G kT C/C++ Python OpenCL

Runtime

28 November 1,2019 | www.CMC.ca 7‘ M‘ -



Software stack for the FPGA/GPU cluster

Applications Machine Learning DB Video Finance  Genomic
Caffe TensorFlow PyTorch

ML Framework B :
BLAS,FFT,
RNG

Hardware Accelerators

cuDNN  MLOpen C/C++ Python OpenCL

Hardware




End-to-end Deep Learning platform

FPGA/GPU cluster

FPGA/GPU cluster
Desktop } _

A

1




Scale-out for Training and Inference

Data Parallelism

Data Set 1

Data Set 2

Data Set 3

Model Parallelism

Nodel Node2 Node3




Cluster HW

Cluster Configuration
| crveonment | oeipion |
a Accel - Cerebro 2 Alveo FPGA U200

& Accel - Genisys 2 V100 GPUs
o
W' Accel - Synergy 1 Alveo FPGA U200

<

1 V100 GPU

32 November 1,2019 | www.CMC.ca
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End-to-end Deep Learning platform

Use case

© 2019 and Reg. TM — CMC Microsystems /‘
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Innovation for Defence Excellence and Security (IDEaS)

A Novel Platform of Artificial Intelligence-based Object Detection, Classification and Tracking Using Heterogeneous
Computing Architectures.

I u-ﬁ u@

| ;
5. Inference 1. Dataset ﬁ.&.r “ﬂ l
Tuning l Curation Training Dataset
- = (Future Work) [::,L.l
df ] L |
Video/ @ ﬁ Video/ I . Untrained CNN
Image In Image Out o
) 4: Mo.del 2. Network a .
Validation & Design
Inference ! ! Implementation
\ I a (Training)
3. Network
Training
- - Implementation
Xilinx ZYNQ UltraSCALE+
. (Inference) Trairied CNN
Inference Demonstration on '
Xilinx ZCU102 Development
Board
]
Inference I Training
Demonstration Demonstration
(Milestone 2) (Milestone 1)




A Unified Design Flow for Advanced Computing Platforms

5G/Commun|cat|on Image/Video Processmg Al: Computer Vision, NLP

Edge FPGA/
74 ANESE

CMC



Alveo workloads acceleration

AREA PARTNER WORKLOAD ALVEO ACCELERATION VS CPU

Database Search and Analytics

Financial Computing
Machine Learning
Video Processing / Transcoding

Genomics

BlackLynx Unstructured Data Elasticsearch
Maxeler Value-at-Risk (VAR) Calculation
Xilinx Real-Time Machine Learning Inference
NGCodec HEVC Video Encoding

Falcon Computing Genome Sequencing

90X

89X

20X

12X

10X

Ref. Product Brief Xilinx Alveo U200 & U250

S e



Tesla V100 Acceleration

DGX-1 with Tesla V100 IR | 7.4 hours, 96X faster

8X GPU Server 18 hours, 40X faster

CPU-only Server ll 711 hours

0X 10X 20X 30X 40X 50X 60X 70X 80X 90X 100X

Relative Performance (Based on Time to Train]
Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2699 v4, 2.6GHz

Ref. NVIDIA TESLA V100 GPU ARCHITECTURE

B T TMmc A



CAFFE Framework

Basic concepts

© 2019 and Reg. TM — CMC Microsystems




Caffe features
Data pre-processing and management

$CAFFE_ROQOT/build/tools

Data ingest formats
 LevelDB, LMDB database
« HDF5

* Image files Pre-processing tools
* LevelDB/LMDB creation from raw images
» Generation of the Mean-image
+ Training and validation set creation with
shuffling

Data transformations

* Image cropping, resizing, scaling and
mirroring

* Mean subtraction

EETT 20T v A




Caffe features
Deep Learning model definition K

name: "conv2"

type: "Convolution"
bottom: “data"

top: "conv2"

. param {
* Protobuf model format: 1r mult: 2
decay mult: O
» Developed by Google }
o convolution param {
» Method of serializing structured data num output: 256
2
» Human readable pad o
ernel size: 5
» Used to define network architecture and training parameters group: 2
. . weight filler {
> No codlng FGQUIFEd! type: "gaussian"
std: 0.01

}

bias filler {
type: "constant"
value: 1

EETT 20T v A



Caffe features
Deep Learning model definition

Loss functions: Available layer types: Activation functions:
e Classification e Convolution * RelU

e Softmax * Pooling e Sigmoid

* Hinge loss *  Normalization * Tanh
* Linear regression * Data... e and more...

* Euclidean loss

) Attrlb.utes/‘mu|t|c|a55|f|cat|0n Feature Extraction Classification
* Sigmoid cross entropy loss
| |

e and more... Convolution
Pooling (Max, Average...)
Activation (ReLu...)

: Class IDs. Prob.

— L ﬁ ------ dog (0.01)
prep——— cat (0.04)
ir 0O | boat (0.94
f'—l' - == bird (0.0
-+ [ yp— - -
' ___-.,g-...-D o B S S ) - R '

CMC

Fully-connected network
Matrix multiply




CAFFE Framework

Use Case : CNN architecture and training implementation

© 2019 and Reg. TM — CMC Microsystems /‘
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DLRSD dataset

agricultural

£ baseballdiamond

1 beach

buildings

chaparral

denseresidential

forest

freeway

7 golfcourse

harbor

intersection

mediumresidential

mobilehomepark

overpass

1 parkinglot

river

£ runway

sparseresidential
storagetanks
tenniscourt

2100 images 256x256 pixels, 21 class labels

B TS A
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Step 1 - Data preparation

Objective: Create a training and validation databases (from DLRSD dataset) that can be ingested by CAFFE.
We created two scripts to perform this step:
Script 1: prepair_images.py
> copy all images from DLRSD directories to one destination directory,
> creates train.txt and val.txt required for the training and validation theses text files provide for each image file its class.
Script 2: create_dataset_Imdb.sh
> resizes all images in the dataset to 227x227 resolution,
> creates train_Imdb as well as val_Imdb required for training and validation,

An additional step in the data preparation is the creation of the mean image mean.binaryproto using make_mean.sh
which is provided by CAFFE.

B T TMmc A



Step 1 - Data preparation

agricultural

[ baseballdiamond
E7 beach

buildings

B4 chaparral
denseresidential
forest

freeway

B9 golfcourse
harbor

1 intersection
mediumresidential
£ mobilehomepark
overpass

B parkinglot

B river

runway
sparseresidential
storagetanks
tenniscourt

= prepair_images.py

train_Llmdb
data.mdb
lock.mdb

val lmdb
data.mdb
lock.mdb

trainvallmages

——

=4 8_denseresidential04.tif
2 8_denseresidential03.tif
& 8_denseresidential02.tif
2 8_denseresidentialOl.tif
&% 8_denseresidential00.tif
& 7_freeway99.tif

= = 7_freeway98.tif
2 7_freeway97.tif
& 7_freeway96.tif

< val.txt

train.txt x

4 _mobilehomepark62.tif 4
5_harbor75.tif 5

1 _sparseresidentiale3.tif 1
0_overpass73.tif o

18 agriculturals4.tif 18
16_parkinglot47.tif 16
6_airplane6l.tif 6
18_agriculturall9.tif 18
10_intersectionl8.tif 10
17_mediumresidentiale4.tif 17
0_overpass02.tif o
15_baseballdiamond45.tif 15

9 _runway58.tif 9
19_chaparrals89.tif 19

8 _denseresidentiall8.tif 8
14 _golfcourse73.tif 14
18_agriculturalél.tif 18
9_runway2e.tif 9
14_golfcourse99.tif 14

2 forest8@.tif 2
4_mobilehomepark66.tif 4

19 _chaparral94.tif 19
17_mediumresidential73.tif 17
3_riverdl.tif 3
10_intersectionl3.tif 10

9 runway39.tif 9
9_runway70.tif 9
3_river76.tif 3
9_runway67.tif 9
18_agricultural7s.tif 18
17_mediumresidential25.tif 17
4_mobilehomepark6e.tif 4

3 river26.tif 3

5 _harbor24.tif 5
10_intersection51.tif 16

18_agriculturale4.tif 18
18_agriculturall2.tif 18
19 chaparral36.tif 19
11_buildingsi1e.tif 11
12_tenniscourt69.tif 12

3 _river2e.tif 3

7 freeways1.tif 7
1e_intersection66.tif 1@
6_airplane77.tif 6
13_beach97.tif 13
3_river56.tif 3
14_golfcourse@2.tif 14

19 _chaparral73.tif 19

11 _buildings76.tif 11
20_storagetankse@l.tif 20
10_intersection48.tif le
18_agricultural36.tif 18
3_riverd3.tif 3

11 _buildings26.tif 11

2 forest34.tif 2
8_denseresidential71.tif 8
20_storagetanks28.tif 20
11_buildings63.tif 11

11 _buildings57.tif 11
5_harbor43.tif 5

5 harbor84.tif 5
1_sparseresidential48.tif 1
14_golfcourse@6.tif 14

2 forest51.tif 2
8_denseresidential@2.tif 8
8_denseresidential84.tif 8
14 golfcourse97.tif 14
6_airplane@?7.tif 6

2 forest66.tif 2
12_tenniscourt8s.tif 12

create_dataset_Imdb.sh

GLOG_logtostderr=1 STOOLS/convert_imageset \
--resize_height=SRESIZE_HEIGHT \
--resize_width=SRESIZE_WIDTH \

--shuffle \

STRAIN_DATA_ROOT \
SDATA/train.txt \
SEXAMPLE/train_|




Step 2 - Model definition

* Select a CNN architecture and define its parameters in a configuration file

caffenet _train_val_1.prototxt.

* In this demo, we will use the bvle reference caffenet model, which is a replication of

AlexNet.

» In order to fit this model with the requirement of this project, we need to perform the following

modifications:
* Update the path for input training data, input validation data as well as the path to the mean image.

e Update the outputs of the fully connected layer “fc8” from 1000 to 21.

B T TMmc A


https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

Step 2 - Model definition

name: "CaffeNet"

caffenet_train_val_1.prototxt layer {

name: "data"
type: "Data"

top: "data"
top: "label™
include {

phase: TRAIN
1
transform param {

mirror: true
. e

mean:file: “/home/ideas/.10cal/install/caffe/cmcideasidevolmean.binaryproto“l

L i

source: "/home/ideas/.local/install/caffe/cmcideas dev0/outlmdb/train Imdb" I
—

p == gl s g =y

backend: LMDB

Change the path for
input data

layer {
H name: "data"
and mean image fype: "Data”
top: "data"
top: "label”
include {

phase: TEST
}
transform param {
mirror: false

-

Change the
number of
outputs from
1000 to 21

Imean:file: “/home/ideas/.local/install/caffe/cmcideas_devﬂlmean.binaryproto“l

I

source: "/home/ideas/.local/install/caffe/cmcideas_dev0/outlmdb/val 1lmdb™

backend: LMDB

bottom: "fc7™
tops: “fc8™
param {

lr mult: 1

decay mult: 1

}
param {
1r mult: 2

decay mult: O

"gaussian"

std: 0.01
bias_filler {
value: 0

}

ayer {

bottom: "fc8"

bottom: "label™

top: "accuracy”

include {
phase: TEST

}

ayer {
name: "loss"

type: "constant"™

name: "accuracy"
type: "Accuracy"

type: "sSoftmaxwWwithLoss

bottom: "fc8"
bottom: "label”
top L agnlassi

TMC



Step 2 - Model definition
printing the model

> python /home/ideas/.local/install/caffe/ python/draw_net.py
/home/ideas/.local/install/caffe/cmcideas_devO/caffenet_train_val_1.prototxt
/home/ideas/.local/install/caffe/cmcideas_dev0/caffe_model_1.png




Step 3 - Solver definition

*  The setvethpne/ideapiloualfitesta e affefomei deasd dbvQytaffsadtiaraimd guiderthettraining and testing process.
test_iter: 400
*  The teshtimtdrudlsdd@r_1.prototxt is as follow:
base Ir: 0.001
Ir_policy: "step"
gamma: 0.1
stepsize: 5000
display: 20
max_iter: 10000
momentum: 0.9
weight_decay: 0.0005
snapshot: 2000
snapshot_prefix: "/home/ideas/.local/install/caffe/cmcideas_dev0/caffe_model 1"
solver_mode: GPU

B T TMmc A



Step 4 - Model training

At this step, we are ready to train the model by executing the following CAFFE command from the terminal:

>caffe train solver /home/ideas/.local/install/caffe/cmcideas_dev0/solver_1.prototxt 2>&1 | tee
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log

10205 11:13:50.180753 23320 sgd solver.cpp:185] Iteration 3960, 1r = 0.001
10205 11:13:50.365981 23326 data layer.cpp:73] Restarting data prefetching from start.
10205 11:13:53.088064 23320 solver.cpp:218] Iteration 3920 (6.87914 iter/s, 2.90734s5/20 iters), loss = 5.28497e-05
10205 11:13:53.088107 23320 solver.cpp:237] Train net output #0: loss = 5.27813e-05 (* 1 = 5.27813e-05 loss)
10205 11:13:53.088116 23320 sgd solver.cpp:185] Iteration 3920, 1r = 0.001
10205 11:13:53.418174 23326 data_layer.cpp:73] Restarting data prefetching from start.
10205 11:13:55.995802 23320 solver.cpp:218] Iteration 3940 (6.87827 iter/s, 2.90771s/20 iters), loss = ©.000599943
10205 11:13:55.995854 23320 solver.cpp:237] Train net output #0: loss = 0.000599875 (* 1 = 0.000599875 loss)
18205 11:13:55.995863 23320 sgd solver.cpp:185] Iteration 3948, lr = 0.001
train Io . 10205 11:13:56.472354 23326 data_layer.cpp:73] Restarting data prefetching from start.
. g 160205 11:13:58.904565 23320 solver.cpp:218] Iteration 3960 (6.876 iter/s, 2.90867s/20 iters), loss = 8.000147462
10205 11:13:58.904662 23320 solver.cpp:237] Train net output #0: loss = 0.000147394 (* 1 = 0.000147394 loss)
10205 11:13:58.904672 23320 sgd_solver.cpp:185] Iteration 3960, lr = 0.001
10205 11:13:59.525619 23326 data_layer.cpp:73] Restarting data prefetching from start.
10205 11:14:01.812296 23320 solver.cpp:218] Iteration 3980 (6.87841 iter/s, 2.90765s5/20 iters), loss = 0.000356035
10205 11:14:01.812355 23320 solver.cpp:237] Train net output #0: loss = 0.000355967 (* 1 = 0.000355967 loss)
10205 11:14:01.812364 23320 sgd_solver.cpp:165] Iteration 3980, lr = 0.001
10205 11:14:02.579222 23326 data_layer.cpp:73] Restarting data prefetching from start.
10205 11:14:04.524401 23320 solver.cpp:447] Snapshotting to binary proto file /home/ideas/.local/install/caffe/cmcideas deve/
L |caffe model 1 iter 4000.caffemodel

>python /home/ideas/.local/install/caffe/cmcideas_dev0/plot_learning_curve.py
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log
/home/ideas/.local/install/caffe/cmcideas_dev0/learning_curve.png




Training result

Figure depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a
function of the number of iterations.
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» We observe from this figure that the model achieved a validation accuracy of ~85%, and it
stopped improving after 4000 iterations.
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Transfer Learning

» lIssues:
» CNNs require large datasets and a lot of time to train.
» Some CNNs could take up to 3-4 weeks to train.

» Solution: Transfer learning.

» Concept: Instead of training the network from scratch, transfer learning trains an already trained
model on a different dataset.
» Fine-tune the trained model:
» Train the trained model on the new dataset by continuing the backpropagation.

» We can either fine-tune the whole network or freeze some of its layers.
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Model Training with Transfer Learning

» After defining the model and the solver, we can start training the model by executing the command below.

» Note that we can pass the trained model's weights by using the argument --weights

2>&1 | tee

/home/ideas/.local/install/caffe/cmcideas_dev0/train.log




Training result

This figure depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a function

of the number of iterations. Training Curve
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* We observe from this figure that the model achieved a validation accuracy of ~“98%, and it stopped
improving after 1000 iterations.
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Live Demo
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XfDNN Software Stack Overview
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