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CMC Microsystems

Lowering barriers to technology adoption  



CMC Microsystems

The services provided by CMC are 
essential for the research and training 
required to advance the digital 
economy: 

Industry 4.0, autonomous vehicles, big 
data, Internet of Things (IoT), cyber 
defence and security, 5G, quantum 
computing, artificial intelligence (AI)

Academic and Industrial Users

> Not for profit – federally incorporated 1984

> Manages Canada’s National Design Network®

> Delivers micro-nano innovation capabilities



Canada’s National Design Network

©  2019 CMC Microsystems 

Annually:
1200 connected 
professors

4200 researchers on
professors’ teams

5700 users of computer
aided design tools

300 physical prototypes

80 test equipment loan
items otherwise
unaffordable to users

A Canada-wide collaboration between 66 universities/colleges to connect 10,000 academic participants with 
950 companies to design, make and test micro-nanosystem prototypes. CMC Microsystems manages Canada’s 
National Design Network®.

3780 publications                                

110 awards

160 patents awarded & applied

500 industrial projects

15 new startups 

780 trained HQP moved to industry in Canada

2017 Outcomes:



Lowering Barriers to Technology Adoption
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CMC delivers key services to increase researchers’ and 

companies’ innovation capability in Canada:

➢Design tools (software)

➢Fabrication services to create working prototypes

➢Equipment and services for prototype testing

➢Platform technologies

➢Training, support, networking

➢Technology plan and roadmap
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CNDN - Engaging strategically 
in Canada and worldwide

Global partnerships to support 
research excellence in Canada

info@cmc.ca

Industrial Supply Chain



Discover, Collaborate, Connect

Make CMC your partner on the path to R&D and commercialization

> Industrial Supply Chain - engaging strategically

> R&D collaborations - accelerating projects

> Services for emerging processes and products - connecting to early adopters

> SponsorChip - enhancing your research efforts

Products & services: keeping researchers at the leading edge

> CAD - FAB - LAB - and more…

> Visit: www.cmc.ca/SuccessStories
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https://www.cmc.ca/successstories/


From idea to manufacturable prototype
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http://www.cmc.ca/CAD
http://www.cmc.ca/FAB
http://www.cmc.ca/LAB
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CAD

State-of-the-art environments for successful design  |  www.cmc.ca/CAD
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CAD

Over 500 CAD tools 

and modules

Over 5000 individual 

users annually

PDK, training, support x

AND 
MORE…
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FAB

Services for making working prototypes  |  www.cmc.ca/FAB



Global supply chain
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> Advanced technology access to microelectronics, photonics, optoelectronics, MEMS, 
microfluidics, and embedded systems technology including TSMC, GlobalFoundries, 
AMF, IBM, and STMicroelectronics. 

> CMC is channel partner for GlobalFoundries in North America. 

AND 
MORE…

http://www.cadence.com/
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LAB

Device validation to system demonstration  |  www.cmc.ca/LAB



CMC Cloud:

Unified Architecture

CMC Cloud

Virtual Infrastructure

Client VMs
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Accelerator Cluster Compute Infrastructure
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2 x CPU

2 x CPU
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8 x CPU

2 x CPU & Large memory

2 x CPU & Large memory

2 x CPU & Large memory

2 x CPU & Large memory

Object storage

Other storage

Lustre PFS

Node NodeNode

Seamless Transition Between Environments

• CAD - Design using CMC Cloud desktop

• FAB - Simulate on the CAD Compute cluster

• LAB - Prototype on the FPGA+GPU cluster



CMC Cloud: Design Environments

No local CAD server available?
• Complex design tools (e.g. Cadence, Mentor, 

Synopsys), scripts and licensing pre-configured 
and ready

High quality server infrastructure
• Enterprise grade server infrastructure being 

using to run the tools in CMC Cloud

Time from concept to using tools
• After you discover you need to use a tool, with 

CMC Cloud you can be fully utilizing the tools 
within minutes

Immediate access to design flows
• Design flows are developed and supported by 

CMC engineers

www.cmc.ca/CMCCloud

CMC Cloud provides researchers with secure, high-performance, 
remotely accessible EDA resources for design of advanced 
microsystems and nanotechnologies.
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http://www.cmc.ca/CMCCloud


CMC Cloud “mini”-HPC Cluster for CAD

Speed up your simulations

• CMC engineers provide assistance in utilizing the infrastructure as well as domain 
knowledge on utilizing HPC infrastructure 

• Documentation/reference designs available for ANSYS, COMSOL, Xilinx and more

• Uniform array available in standard and large memory configurations

CAD Compute Cluster – 8 nodes

▪ Dual 16-core 2.1-.3.7 GHz CPU

▪ 4 nodes each with 384GB RAM

▪ 4 nodes each with 768GB RAM

▪ 300GB local storage

▪ 100Gb EDR node interconnect / 10GbE storage

©  2019 CMC Microsystems 



CMC Cloud FPGA/GPU Cluster
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➢ CPUs, GPUs and FPGAs in pre-validated cluster to scale heterogenous computing workloads
➢ Machine learning training and inference (e.g. CNN for object detection, speech recognition)
➢ Video Processing / Transcoding, Financial Computing, Database analytics, Networking
➢ Quantum chemistry, molecular dynamics, climate and weather, Genomics
➢ RISC-V Accelerators in Open Source Cloud Computing

FPGA/GPU cluster Specifications



Research in the public cloud
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Related CMC Services:

> Training courses, webinars, and 
documentation

> PDKs from CMC suppliers

> CMC’s fabrication services (DRC and MPW)

> Cadence license management

CMC Microsystems offers members of the 
Cadence® University Software Program 
access to leading-edge technology through 
the Cadence Cloud Passport program

Cloud Passport:

> Cadence in public cloud

> Fully configured and installed: 
on-demand, continuous software updates, 
zero admin costs

> Access high-performance design lab anywhere
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AI ML and DL



AI: Area of Specialization

➢ Transforming almost every business

➢ Exploding ecosystem of tools, making it more accessible to even non-experts

➢ Area of Specialization

➢ Gaming

➢ Natural Language Processing

➢ Computer Vision

➢ Robotics

➢ Autonomous Cars

➢ …



AI and Machine Learning
AI: The theory and development of computer systems able to perform tasks normally requiring 
human intelligence, such as visual perception, speech recognition, decision-making, and translation 
between languages. –Source oxfordreference.com

AI

ML

DL

• AI: Artificial Intelligence
• Sense, reason, act and adapt

• ML: Machine Learning
• Algorithms that improve as they are exposed to data over time

• DL: Deep Learning
• Multilayered neural networks learn from vast amounts of data

• DL Training:
Using a set of training sample data to determine the optimal weights of the 
artificial neurons in a DNN.

• DL Inference:
• Analyzing specific data using a previously trained DNN.

Source: What’s the Difference Between Artificial Intelligence (AI), Machine Learning, and Deep Learning?

by Glenn Evan Touger

• After a neural network is trained, it is deployed to run inference:

• to classify, recognize, and process new inputs.

http://www.prowesscorp.com/author/glenn-touger/


Rise in popularity of deep learning

➢ Key enablers:

➢ Greater availability of large data sets, containing more training examples

➢ Availability and Efficient use of accelerators such as GPUs, FPGAs and custom hardware such as 

Tensor Processor to train deep learning models

➢ New ML techniques (Deep Neaural Networks) and Open source machine learning flow, as well 

as ML libraries
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FPGA/GPU cluster HW and SW Specifications



CMC Cloud FPGA/GPU Cluster
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FPGA/GPU cluster Specifications
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Software stack for the FPGA/GPU cluster
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Applications

Middleware, 

Tools and Libraries

Hardware

ML Framework



End-to-end Deep Learning platform
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Prototype Training

FPGA/GPU cluster

Embedded System

Inference

FPGA/GPU cluster
Desktop



Scale-out for Training and Inference

Model Parallelism

Data Set 1

Data Set 2

Data Set 3

Node1 Node2 Node3

Data Parallelism

Data Set 1

Data Set 2

Data Set 3

Node1

Node2

Node3
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GPU

FPGA ASIP

CPU
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End-to-end Deep Learning platform

Use case



Innovation for Defence Excellence and Security (IDEaS) 
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A Novel Platform of Artificial Intelligence-based Object Detection, Classification and Tracking Using Heterogeneous 

Computing Architectures. 



ASIC Flow
(Synopsys, Cadence, Mentor)

FPGA Flow
(Xilinx, Intel, Lattice)IPs IPs

Algorithms
C/C++/SystemC Model

HLS
(Catapult…)

Optimized RTL

ASIC

HW Emulator

Edge FPGA

Cloud FPGA

Processor Models
ASIP, RISC-V…

Processor Design
(ASIP…)

SDK

HW/SW Cosim./CoVer.

LIBs 
28nm..

5G/Communication Image/Video Processing AI: Computer Vision, NLP..

A Unified Design Flow for Advanced Computing Platforms



Alveo workloads acceleration
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Ref. Product Brief Xilinx Alveo U200 & U250 



Tesla V100 Acceleration
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Ref. NVIDIA TESLA V100 GPU ARCHITECTURE
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CAFFE Framework
Basic concepts



Caffe features 
Data pre-processing and management

$CAFFE_ROOT/build/tools
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Data ingest formats 
• LevelDB, LMDB database 

• HDF5 

• Image files Pre-processing tools 
• LevelDB/LMDB creation from raw images 

• Generation of the Mean-image

• Training and validation set creation with 

shuffling 

Data transformations 
• Image cropping, resizing, scaling and 

mirroring 

• Mean subtraction



Caffe features
Deep Learning model definition
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• Protobuf model format:

➢ Developed by Google

➢ Method of serializing structured data

➢ Human readable

➢ Used to define network architecture and training parameters

➢ No coding required!

layer {

name: "conv2"

type: "Convolution"

bottom: “data"

top: "conv2"

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 256

pad: 2

kernel_size: 5

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}  

}

}



Caffe features
Deep Learning model definition
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Available layer types:
• Convolution
• Pooling
• Normalization
• Data…

Loss functions:
• Classification

• Softmax
• Hinge loss

• Linear regression
• Euclidean loss

• Attributes/multiclassification
• Sigmoid cross entropy loss

• and more…

Activation functions:
• ReLU
• Sigmoid
• Tanh
• and more…

Feature Extraction Classification

• Convolution

• Pooling (Max, Average…)

• Activation (ReLu…)

• Fully-connected network

• Matrix multiply

Image

Class IDs. Prob.
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CAFFE Framework
Use Case : CNN architecture and training implementation



DLRSD dataset 2100 images 256x256 pixels, 21 class labels
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Step 1 - Data preparation
Objective: Create a training and validation databases (from DLRSD dataset) that can be ingested by CAFFE. 

We created two scripts to perform this step:

Script 1: prepair_images.py 

> copy all images from DLRSD directories to one destination directory, 

> creates train.txt and val.txt required for the training and validation theses text files provide for each image file its class.

Script 2: create_dataset_lmdb.sh 

> resizes all images in the dataset to 227x227 resolution, 

> creates train_lmdb as well as val_lmdb required for training and validation,

An additional step in the data preparation is the creation of the mean image mean.binaryproto using make_mean.sh 
which is provided by CAFFE.

©  2019 CMC Microsystems 



Step 1 - Data preparation
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prepair_images.py

create_dataset_lmdb.sh 

GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \
$EXAMPLE/train_lmdb



Step 2 - Model definition

• Select a CNN architecture and define its parameters in a configuration file 

caffenet_train_val_1.prototxt. 

• In this demo, we will use the bvlc_reference_caffenetmodel, which is a replication of 

AlexNet. 

• In order to fit this model with the requirement of this project, we need to perform the following 

modifications:

• Update the path for input training data, input validation data as well as the path to the mean image.

• Update the outputs of the fully connected layer “fc8” from 1000 to 21.
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https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet


Step 2 - Model definition
caffenet_train_val_1.prototxt
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Change the path for 

input data 
and mean image Change the 

number of 

outputs from 

1000 to 21



Step 2 - Model definition
printing the model
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> python /home/ideas/.local/install/caffe/ python/draw_net.py 
/home/ideas/.local/install/caffe/cmcideas_dev0/caffenet_train_val_1.prototxt
/home/ideas/.local/install/caffe/cmcideas_dev0/caffe_model_1.png



Step 3 - Solver definition

• The solver provide parameters to perform model optimisation and guide the training and testing process.

• The content of solver_1.prototxt is as follow:
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net: "/home/ideas/.local/install/caffe/cmcideas_dev0/caffenet_train_val_1.prototxt"

test_iter: 400

test_interval: 500

base_lr: 0.001

lr_policy: "step"

gamma: 0.1

stepsize: 5000

display: 20

max_iter: 10000

momentum: 0.9

weight_decay: 0.0005

snapshot: 2000

snapshot_prefix: "/home/ideas/.local/install/caffe/cmcideas_dev0/caffe_model_1"

solver_mode: GPU



Step 4 - Model training
At this step, we are ready to train the model by executing the following CAFFE command from the terminal:
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>caffe train -solver /home/ideas/.local/install/caffe/cmcideas_dev0/solver_1.prototxt 2>&1 | tee 
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log 

>python /home/ideas/.local/install/caffe/cmcideas_dev0/plot_learning_curve.py 
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log 
/home/ideas/.local/install/caffe/cmcideas_dev0/learning_curve.png

train.log 



Training result
Figure depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a 
function of the number of iterations. 
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• We observe from this figure that the model achieved a validation accuracy of ~85%, and it 
stopped improving after 4000 iterations. 



Transfer Learning

➢ Issues: 

➢ CNNs require large datasets and a lot of time to train. 

➢ Some CNNs could take up to 3-4 weeks to train. 

➢ Solution: Transfer learning. 

➢ Concept: Instead of training the network from scratch, transfer learning trains an already trained 
model on a different dataset.

➢ Fine-tune the trained model: 

➢ Train the  trained model on the new dataset by continuing the backpropagation. 

➢ We can either fine-tune the whole network or freeze some of its layers.
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Model Training with Transfer Learning

➢ After defining the model and the solver, we can start training the model by executing the command below. 

➢ Note that we can pass the trained model's weights by using the argument --weights
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> caffe train --solver=/home/ideas/.local/install/caffe/cmcideas_dev0/solver_1.prototxt --weights 
/home/ideas/.local/install/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 2>&1 | tee 
/home/ideas/.local/install/caffe/cmcideas_dev0/train.log



Training result

This figure  depicts the resulting learning curve, which is a plot of the training loss and test accuracy as a function 
of the number of iterations. 
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• We observe from this figure that the model achieved a validation accuracy of ~98%, and it stopped 
improving after 1000 iterations. 
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Live Demo



xfDNN Software Stack Overview
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Ref. Accelerating DNNs with Xilinx Alveo Accelerator Cards
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Thank you

Yassine Hariri
Hariri@cmc.ca

www.cmc.ca
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