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Overview

* Biological Neurons implementation on Hardware devices can
accelerate the computations

* Complexity and high parallelism of biological neurons complicate the
HW implementations

* Neuromorphic computing: the end of the Van Neuman architecture

* Few examples of neuromorphic platforms: SpiNNaker, Loihi and
TrueNorth

e ASIC and FPGA: One purpose and two different ways to emulate
complex architectures
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Introduction

* Hardware Implementation can speed up the computations and
increase performances of a complex architectures

* FPGA (Field Programmable Gate Array) are a popular devices used to
prototype and emulate digitally mathematical and logical models for
different purposes: industry, control, security, Al, and Neuromorphic

* Neuromorphic computing allows us to perform high parallel and
real-time computing with non-conventional Van Neuman machine



Neuromorphic Computing

 Neuromorphic devices represent an attempt to mimic aspects of the
brain’s architecture and dynamics with the aim of replicating its
hallmark functional capabilities in terms of computational power,
robust learning and energy efficiency

* It offers a realistic emulation of the neuronal membrane dynamics
using electronic circuits or simulated using specialized digital systems

* Some applications: speech recognition, character recognition,
grammar modeling, noise modeling, as well as the generation and
prediction of chaotic time series

 Neuromorphic chips, unlike conventional processor are energy
efficient and fully parallelized

* Resolve the von Neuman bottleneck by collocating the processor and
the memory



Neuromorphic Computing

e Limitations of the tradition
Von-Neuman Architecture

 Neuromorphic architecture
breakthrough computation
architecture
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From Biology to Circuit!

* Design an ASIC is very costly in time
) _Froa @ Asic 4

and money because of the complexity
of the design flow which require the
design of each single transistor and
each connection

that can retain a state of internal
resistance based on the history of
applied voltage and current * Medium

omparison
* ASICs offer less power consumption - High
and higher performances than FPGAs _— _—
e Analog platform using memristive s Ko High

e High Low

Low

HARDWAREBEE
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Dendrites From Biology to Circuit

Axon terminals
{

Axon

e
Spiking Input

Dendrite

Signal Direction
——

| Dendrite Synapse

Spiking Input

Synapse Synapse

Soma
(Neuron body)

Dendrit

-
Spiking Input



Comparison between brain, von Neumann, and
neuromorphic computing architectures

Neuromorphic Computing Human Brian
Learning Algorithms Unknown
- SIS Neurons
Reverse © = Synapses
Neural Networks Engineering Brain Computing System
Spiking Signals Spiking Signals
Artificial Neurons and Synapses Biological Neurons & Synapses
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Processing Units and Memory are collocated
in Neuromorphic platforms

, i Memory
TrueNorth Chip| ;"\‘ Controller -
64 x 64 cores \

> |
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SpiNNaker: Human Brain Project Neuromorphic

Platform

e SpiNNaker: SpiNNaker 2 will consist of 10 M ARM cores distributed

across 70.000 Chips in 10 server racks.

MUX
= 18 Processors
n
L@ M_[{ ARMO68
S @[ | Router | |3[7T| @200MHz
\-j . NN, PP, MC 32 kB ITCM
o @ 64 kB DTCM ||
_Q I
56 SRAM
'5 @ Systam RAM —
— 32 kByte
SDRAM
128 MByte
The SpiNNaker Board: A building block of a SpiNNaker Architecture: The schematics of a

SpiNNaker machine, containing 48 chips for a total of 864 SpiNNaker Chip with processors, router and shared mem-

ARM processors.
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The BrainScaleS neuromorphic @ 1
physucal model system

You can access
documentation and
tutorials related to HBP at:

https://www.humanbrainpr
oject.eu/en/silicon-brains/
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Loihi: HP Neuromorphic Platform

* Loihi is the last development
of Neuromorphic technology.
It was proposed by Intel in
2018.

* |t was updated in July 2019
to become Pohoiki Beach
Platform and including 64
Loihi board. It can implement
more than 8M neurons (8.3)!
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TrueNorth: IBM Neuromorphic Chip

* The NS16e-4 is one of the THIEBIEHCH
largest neurosynaptic -
computer built to date, NS16e System
totaling 64 mi"ion 16 Million Neurons
neurons and 16 billion
synapses. At only 70 W
the system’s
computational energy
efficiency is
unprecedented, on the
order of ~10! synaptic
operations per second/W

NS16e-4 System

64 Million Neurons
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NEUROGRID

* Developed by Stanford Sy leetadl - HE S ) * 6B synapses
University -l T e LSSl °© 10 spikes/s each

.........

* It emulates biological | » |18
neurons oty " .‘

s
* Uses a analog hdimic B
computations and digital YT

communication module

e 16 chips of 256x256
array
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Why Neuromorphic for Accelerating Al Models?

Neuromorphic Computing offers :

* Implementation Efficiency by ensuring:
» High throughput

» Low energy consumption

» Real-Time processing

* Flexibility of the implementations: Ability to run different model
under different constraints without being restricted to one model.

»Variation in layers
» Algorithm optimization

»Online training
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Thank you

Questions?




Challenges:

We can categorize on three types:
 Computational challenges:

 Memory challenges:

* Accuracy challenges:



Xilinx ZCU FPGA

We will use the
Xilinx Zyng

UltraScale+ MPSoC
/CU102 Evaluation

Boot Mode Switch

Rev 1.0

USB Mouse, Keyboard, Webcam, Hub and Adapter

Monitor (DisplayPort)
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Biologically-Inspired

Biologically-Plausible  Integrate-and-Fire

Fig. 4. A hierarchy of neuron models that have hardware implementations.
The size of the boxes corresponds to the number of implementations for that
model, and the color of the boxes corresponds to the “family” of neuron
models, which are labeled either above or below the group of same-colored

boxes.

McCulloch-Pitts Neuron+Other Model
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With ASIC the
designers should go
through each single
unit and do
verifications and
corrections of the
technology
constraints which is
very costly in time
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* TrueNorth was able to classify images at between 1,200 and 2,600
frames per second (fps), while drawing just 25 to 275 milliwatts of
power. That works out to about 6000 fps per watt, which would allow
a low-power device to classify images in real-time from dozens of
standard TV video feeds simultaneously. For the sake of comparison,
NVIDIA’s latest purpose-built inferencing GPU, the Tesla P4, can

classify images at about 160 images per second per watt using
AlexNet.



LOIHI communication

» Spikes are transported between the cores in the chip using packetized
messages by an asynchronous network-on-chip (NoC) and allows
connecting to 4096 on-chip cores and up to 16,384 chips via
hierarchical addressing.

e At nominal operating conditions, Loihi delivers 30 billion synaptic
operations per second, consuming about 15 pico Joule per synaptic
operation.



Chip Technology Integration density Key functionality/performance metric

SpiNNaker ARM968, 130nm Up to 1 K neurons/core, 1 M cores. Programmable numerical simulations with 72-bit messages, for
CMOS (next-gen real-time simulation of spiking networks
prototypes: ARM
M4F, 28 nm CMOS)

TrueNorth Digital  ASIC  at 1 M neurons, 256 M Synapses; 1-bit synaptic SNN emulation without on-chip learning; 26 pJ per synaptic
28 nm CMOS state to represent a connection, with 4 pro- operation.

grammable 9-bit weights per neuron

Loihi Digital ASIC  at 130 k neurons, 130 M synapses with variable Supports on-chip learning with plasticity rules such as Hebbian,

14 nm CMOS weight resolution (1-9 bits) pair-wise, and triplet-STDP, 23.6 pJ per synaptic operation (at
nominal operating conditions).

BrainScaleS Mixed signal 180 K neurons, 40 M synapses per wafer 103 — 10? fold acceleration of spiking network emulations,
waferscale  system, with hardware-supported synaptic plasticity. Next-gen prototype:
180 nm CMOS programmable plasticity.
(next-gen prototype:
65 nm CMOS)

Braindrop Mixed signal 28 nm 4096 neurons, 64K programmable weights 0.38 pJ per synaptic update, implements the single core of a
CMOS (with analog circuits that allow realization of planned million-neuron chip.

all-to-all connectivity)

DYNAP-SE Mixed signal 180 nm 1024 neurons, 64K synapses (12-bit CAM) Hybrid analog/digital circuits for emulating synapse and neuron
CMOS dynamics, 17 pJ per synaptic operation

ODIN Digital ASIC  at 256 neurons, 64K synapses with 3 bit weight 12.7 pJ per synaptic operation, implements on-chip spike-driven

28 nm CMOS

and 1 bit to encode learning

plasticity




