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Computation Cost in Deep Neural Networks (DNNs)

Training Computation Cost :
Finishing a 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA
M40 GPU takes 14 days. This training requires 1018 single precision
operations in total [Y. You et al ”ImageNet Training in Minutes”].

Inference Computation Cost :
Finishing a full pass of Imagenet with input size of 224x224 with batch size
of 128 requires 13 GB feature memory and 497 GFLOPs [S. Albanie
GitHub:convnet-burden].
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Generate completely new images similar to the training
images

Figure: Image taken from Karras et al. ICLR2018
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Generate completely new images similar to the training
images

Figure: Image taken from Karras et al. ICLR2018
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Quantization For Accelerating Computation in DNNs :

What is Quantization in DNN?
Quantization is a technique to reduce memory consumption and the
computation time of deep neural networks by lowering the precision of
parameters.

Benefits;

• Lower power consumption compared to full precision
(floating point).

• Faster computation.
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Quantization For Accelerating Computation in DNNs :

• Quantization not only uses less memory but it is more
energy efficient:

Figure: Energy consumption of multiplication and accumulation
in a 45nm process (Horowitz, 2014)

• It also speeds up the computation specially for
multiplication and division. For instance for Intel Core i7
4770 3.40GHz doing 32-bit multipication is more than 3
times faster for fixed point data types compared to floating
point data types [https://goo.gl/7Y7GWt].
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U-NET Fixed-Point Quantization Project Collaborators:

MohammadHossein AskariHemmat,
Yvon Savaria, Jean-Pierre David

Sina Honari

Lucas Rouhier, Christian S. Perone,
Julien Cohen-Adad

Published at MICCAI 2019
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U-NET For Medical Image Segmentation:

DECODE ENCODE

Figure: Taken from O. Ronneberger, 2015
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Results For Quantization of U-Net Model for Medical Image:
• We used three different datasets:

Figure: Segments in show false positive, segments in show false negative and segments in
show true positive.
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Results For Quantization of U-Net Model for Medical Image:

• Qa6.0,Qw0.4 compared to other methods:

Figure: shows best score overall and shows best score between three quantiation methods.
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Overall Computation Data Path:

• Fully fixed point data path:
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How to run custom precision?
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Multi Precision Accelerator Project Collaborators:

MohammadHossein AskariHemmat,
Yvon Savaria, Jean-Pierre David

Olexa Bilaniuk

Sean Wagner
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Accelerator Architecture:
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Bit-Slicing FPGA Accelerator for Quantized Neural Networks 
(ISCAS 2019), Olexa Bilaniuk et. al

RISC-V Barrel Processor For Deep Neural Network Acceleration
(FCCM 2020), AskariHemmat et. al
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Matrix-Vector Unit (MVU):
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Bit-serial Vector-Vector Product (VVP):
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e.g. 4x2 bit mult.

Step 1 (MSB)
sum(xN[3] × wN[1])

Shift

Step 2 (MSB-1)
sum(xN[3] × wN[0])

Accumulate
xN[2] × wN[1]

Accumulate, shift

Step 3 (MSB-2)
xN[2] × wN[0]
Accumulate

xN[1] × wN[1]
Accumulate, shift

Step 4 (MSB-3)
xN[1] × wN[0]
Accumulate

xN[0] × wN[1]
Accumulate, shift

Step 5 (LSB)
xN[0] × wN[0]
Accumulate
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Arbitrary precision with bit-serial math:
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Implementation Result on Stratix V GX A7 FPGA:

On it’s default configuration (8 MVUs with ternary-binary
matrix-vector precision):
• Running at 250MHz
• Consumes 20.883W
• May carry out 250K ternary-binary matrix-vector operations

per second, or 8.2 TMAC/s.
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Controller:

We designed a Barrel RISC-V Processor:

• Compatible with RV32I Spec.

• We used GNU tool chain ported to RISC-V to program and
debug.

• Has 8 Hardware Threads (Harts).

• Has a 5 stage pipe line .

• Runs at 350 MHz with CPI of 1 and consumes 0.287W.
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Barrel Processor:

• A barrel processor is a fine-grain multithreading.
• At each clock cycle, we switch between different thread.
• Goal: Maximizing the overall utilization of the processor’s

resources.

Figure: Thread execution order in a Barrel Processor.
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Barrel RV32I Core:
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Barrel RV32I Core Running Code:
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Barrel RV32I Core Implementation Details:

Figure: Implementation on Kintex Ultrascale 40 (KU040).
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Conclusion:

• Efficient Deep Neural Networks computation is still a
challenge.

• Quantization is a method to accelerate computation but
without proper Hardware is not as efficient.

• Quantization can be applied on critical applications (such
as medical segmentation) to accelerate computation.

• A custom hardware is needed to do custom precision
computation.
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Thank you for your attention!
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