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Parametric ML 101

Figure 1: Knobs

m Learning = finding the right knobs settings

= "Regular ML" with thousands parameters
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Layer 1 Layer 2

Knobs everywhere

Learning = finding the right knobs settings

Millions, billions of parameters (NLP mostly)
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Storing the parameters

As is, millions of parameters would be quite the burden on any hardware. We have leeway to
reduce this burden through e.g.:

» Less degrees of freedom per parameter : quantization (well studied)
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Storing the parameters

As is, millions of parameters would be quite the burden on any hardware. We have leeway to
reduce this burden through e.g.:

» Less degrees of freedom per parameter : quantization (well studied)
m Clever network designs (tricky !)
» Pruning (care of sparse network, specific hardware is needed for full advantage)

» Lately Hacene et al. (2019); Hirtzlin et al. (2019) were reducing supply voltage to the
memory with interesting results
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On CMOS supply voltage

The dynamic energy consumption formula

C x V2 = number of parameters x number of bits x V2 x technology dependent constant

m The capacitance C is a constant depending on circuit area
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On CMOS supply voltage

The dynamic energy consumption formula

C x V2 = number of parameters x number of bits x V2 x technology dependent constant

m The capacitance C is a constant depending on circuit area

= Static consumption = system online time, proportional to circuit area, i.e. number of
parameters

» Dynamic consumption = number of memory accesses. No writes, only reads. Each
parameters is read once

m Play with V' and achieves quadratic savings !
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An optimisation problem

No free lunches, sorry
Reducing voltage as in near threshold CMOS will increase the fault rate p when reading bits
(Dreslinski et al. (2010))

n(p) = —@

with 7 the normalized consumption and a a technology dependent parameter
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An optimisation problem

No free lunches, sorry

Reducing voltage as in near threshold CMOS will increase the fault rate p when reading bits
(Dreslinski et al. (2010))

)= -5

with 7 the normalized consumption and a a technology dependent parameter

We seek to jointly optimize an energy-capability trade-off through a fault rate parameter p that
(i) degrades the capability when going up and (ii) reduces the energy when going up; while
retaining the maximum capability for the lowest energy.

We exploit the known relationship between p and 1 (and in fine V) to measure the trade-off.
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Hyp.: we can improve the supply voltage idea by letting the network find its own "best" supply
voltage
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LaNMax
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Problem statement

We want to find efficiently the fault rate p that gives the best capability to the neural network
for the lowest energy without additional mechanisms.
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Efficiently

m Finding the fault rate should have a small training overhead, idealy not at the cost of more
training epochs
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Efficiently

= Finding the fault rate should have a small training overhead, idealy not at the cost of more
training epochs

Implication

Make use of each existing epoch to gain information on the energy-capability trade-off

m Why ? Here are the existing training time for large NLP models as reported by Nvidia.

BERT-Large Training Times on GPUs

Time System Number of Nodes Number of V100 GPUs
47 min DGX SuperPOD 92 x DGX-2H 1,472

67 min DGX SuperPOD 64 x DGX-2H 1,024
236 min DGX SuperPOD 16 x DGX-2H 256
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Without additional mechanism

Explored in Hacene et al. (2019) is the use of circuit-level error detection which zero-out faulty
weights. This kind of Error-Correction mechanism is known and usable !
But this adds up hardware complexity.

Implication

No ECC or such mechanism, the bits are used by the network as they are read.
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Layerwise Noise Maximisation

With a small training overhead constraint, we could easily add degrees of freedom to the
storage energy optimisation : e.g. a fault rate per layer of the neural network.

This would concur with Zhang et al. (2019) (see below): layers don't share the same sensitivity
to randomness.
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Usually, the fault rate is an hyperparameter : we propose to learn it with numerical gradients
on a per-epoch basis.

Numerical gradient components

Vp =OLS,({a ), Ei¢ + loss;|Vi € mini-batch}) coefficients

Moreover, the trade-off is controlled by a parameter a: the bigger o the more emphasis on
energy reduction there will be.
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Layerwise Noise Maximisation

Algorithm overview

Initialize a fault rate p, per £ layer of the network
Begin an SGD like-optimization algorithm, for all epochs
Sample neural network’s weights at the current fault rate + some randomness
Forward the current mini-batch
Store the current energy-capability trade-off
Do the usual backpropagation and gradient descent
When all mini-batches have been done : linear regression on the trade-off points and
numerical gradient descent
[@ Next epoch

Return the neural network weights and the layerwise fault rate
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Outline

Results on image classification
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An optimisation scenario

» Moons et al. (2018) proposed that quantized network may be optimal in the
energy-capability trade-off. Thus we test our method on a 1-bit weighted Wide Residual
Network (Zagoruyko and Komodakis (2016)) that has shown good results in previous

works.
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An optimisation scenario

= Moons et al. (2018) proposed that quantized network may be optimal in the
energy-capability trade-off. Thus we test our method on a 1-bit weighted Wide Residual
Network (Zagoruyko and Komodakis (2016)) that has shown good results in previous
works.

» The net is binarized with Binary Connect Courbariaux et al. (2015) on the Conv. and FC
layers. These layers have the additional trainable fault rate !

m The faults are uniformly drawn at the rate p each time a forward pass is done.

» We use CIFAR-10 dataset with Adam and standard hyperparameters.
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Comparing at isoaccuracy

= Can LaNMax provide efficient nets with higher accuracy than reliable smaller networks ?

S. Henwood, F. Leduc-Primeau, et al. Layerwise Noise Max. March 6, 2020 16 /21



Comparing at isoaccuracy

= Can LaNMax provide efficient nets with higher accuracy than reliable smaller networks ?

» As we vary the size of the network, we note p the nb. of params. w.r.t. reference network
(36 millions parameters).
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Comparing at isoaccuracy

= Can LaNMax provide efficient nets with higher accuracy than reliable smaller networks ?

= As we vary the size of the network, we note p the nb. of params. w.r.t. reference network
(36 millions parameters).

A fair comparison

For our results to be relevant, we will only compare networks that achieve the same accuracy.
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Beforehand: are All Layers Equals 7

Recall earlier : does our scenario verify the layerwise sensitivity to randomness?
Train with 1% fault rate on global, test with maximum fault rate per layer (i.e. 50%).
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Figure 3: Sensitivity analysis under uniform noise p = 1%

S. Henwood, F. Leduc-Primeau, et al. Layerwise Noise Max. March 6, 2020



Comparing LaNMax VS net configs. relative energy
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Comparing LaNMax VS net configs. relative energy
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Comparing LaNMax VS net configs. relative energy
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Comparing LaNMax VS net configs. relative energy

- 96

X

& 95

@©

5

o 94

©

[0)

& 93

o

= .

< 2.'\\\”\. L L] !
5% 10% 30% 100% 400%

E

—®— FP16, noiseless

—fi— BC, noiseless

—0— BC (p = 1), uniform noise
=@+ BC (p = 1), LaNMax
=4+ BC (p= 1), LaNMax

March 6, 2020 18 /21

S. Henwood, F. Leduc-Primeau, et al. Layerwise Noise Max.



Comparing LaNMax VS net configs. relative energy

96

& ‘ ‘
= ~ 2.5x
> 9%BF |
I
5
S Mt A
o]
(0]
o0 o
o :
g °
<C 2 T R !
5% 10% 30% 100% 400%

E
—®— FP16, noiseless
—fi— BC, noiseless
—0— BC (p = 1), uniform noise
=@+ BC (p =1), LaNMax
=4 BC (p= 1), LaNMax

March 6, 2020 18 /21

S. Henwood, F. Leduc-Primeau, et al. Layerwise Noise Max.



Comparing LaNMax VS net configs. relative energy
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Aftermatch : layerwise sensitivity

We can plot the learned fault rate at ¢ :
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Instead of unreliable small layers from our layerwise sensitivity experiment, we have achieved a
fault rate that prioritize unreliability on the largest layers. Good for E !
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Outline

Wrap-up
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Take-away

= Neural nets are terribly good at learning robustness
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Neural nets are terribly good at learning robustness

Binary neural nets are more robusts than people thoughts, with the adequate tools (not
Dropout)

Exploit this robustness by learning a layerwise fault rate during training

Deploy a neural network on a server/embedded system at roughly a third of the storage
energy cost

This work will be presented at AICAS 2020 and is accessible on Arxiv for details (arXiv:1912.10764
[cs.LG]).
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