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Parametric ML 101

Figure 1: Knobs

Learning = finding the right knobs settings

"Regular ML" with thousands parameters
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Parametric ML 101 - Deep Learning Edition

(a) Layer 1 (b) Layer 2

Figure 2: Knobs everywhere

Learning = finding the right knobs settings

Millions, billions of parameters (NLP mostly)

S. Henwood, F. Leduc-Primeau, et al. Layerwise Noise Max. March 6, 2020 4 / 21



Storing the parameters

As is, millions of parameters would be quite the burden on any hardware. We have leeway to
reduce this burden through e.g.:

Less degrees of freedom per parameter : quantization (well studied)

Clever network designs (tricky !)

Pruning (care of sparse network, specific hardware is needed for full advantage)

Lately Hacene et al. (2019); Hirtzlin et al. (2019) were reducing supply voltage to the
memory with interesting results
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On CMOS supply voltage

The dynamic energy consumption formula

C × V 2 = number of parameters× number of bits× V 2 × technology dependent constant

The capacitance C is a constant depending on circuit area

Static consumption = system online time, proportional to circuit area, i.e. number of
parameters

Dynamic consumption = number of memory accesses. No writes, only reads. Each
parameters is read once

Play with V and achieves quadratic savings !
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An optimisation problem

No free lunches, sorry
Reducing voltage as in near threshold CMOS will increase the fault rate p when reading bits
(Dreslinski et al. (2010))

η(p) = − log(p)

a

with η the normalized consumption and a a technology dependent parameter

S. Henwood, F. Leduc-Primeau, et al. Layerwise Noise Max. March 6, 2020 7 / 21
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No free lunches, sorry
Reducing voltage as in near threshold CMOS will increase the fault rate p when reading bits
(Dreslinski et al. (2010))

η(p) = − log(p)

a

with η the normalized consumption and a a technology dependent parameter

We seek to jointly optimize an energy-capability trade-off through a fault rate parameter p that
(i) degrades the capability when going up and (ii) reduces the energy when going up; while
retaining the maximum capability for the lowest energy.
We exploit the known relationship between p and η (and in fine V ) to measure the trade-off.
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Our work

Hyp.: we can improve the supply voltage idea by letting the network find its own "best" supply
voltage
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Problem statement

We want to find efficiently the fault rate p that gives the best capability to the neural network
for the lowest energy without additional mechanisms.

Adapted from Dreslinski et al. (2010)
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Efficiently

Finding the fault rate should have a small training overhead, idealy not at the cost of more
training epochs

Implication
Make use of each existing epoch to gain information on the energy-capability trade-off

Why ? Here are the existing training time for large NLP models as reported by Nvidia.
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Without additional mechanism

Explored in Hacene et al. (2019) is the use of circuit-level error detection which zero-out faulty
weights. This kind of Error-Correction mechanism is known and usable !
But this adds up hardware complexity.

Implication
No ECC or such mechanism, the bits are used by the network as they are read.
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Layerwise Noise Maximisation

With a small training overhead constraint, we could easily add degrees of freedom to the
storage energy optimisation : e.g. a fault rate per layer of the neural network.
This would concur with Zhang et al. (2019) (see below): layers don’t share the same sensitivity
to randomness.
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How-to

Usually, the fault rate is an hyperparameter : we propose to learn it with numerical gradients
on a per-epoch basis.

Numerical gradient components
∇p = OLSp({α

∑
` Ei ,` + lossi |∀i ∈ mini-batch}) coefficients

Moreover, the trade-off is controlled by a parameter α: the bigger α the more emphasis on
energy reduction there will be.
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Layerwise Noise Maximisation

Algorithm overview
1 Initialize a fault rate p` per ` layer of the network
2 Begin an SGD like-optimization algorithm, for all epochs

1 Sample neural network’s weights at the current fault rate + some randomness
2 Forward the current mini-batch
3 Store the current energy-capability trade-off
4 Do the usual backpropagation and gradient descent
5 When all mini-batches have been done : linear regression on the trade-off points and

numerical gradient descent
6 Next epoch

3 Return the neural network weights and the layerwise fault rate
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An optimisation scenario

Moons et al. (2018) proposed that quantized network may be optimal in the
energy-capability trade-off. Thus we test our method on a 1-bit weighted Wide Residual
Network (Zagoruyko and Komodakis (2016)) that has shown good results in previous
works.

The net is binarized with Binary Connect Courbariaux et al. (2015) on the Conv. and FC
layers. These layers have the additional trainable fault rate !

The faults are uniformly drawn at the rate p each time a forward pass is done.

We use CIFAR-10 dataset with Adam and standard hyperparameters.
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Comparing at isoaccuracy

Can LaNMax provide efficient nets with higher accuracy than reliable smaller networks ?

As we vary the size of the network, we note ρ the nb. of params. w.r.t. reference network
(36 millions parameters).
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Comparing at isoaccuracy

Can LaNMax provide efficient nets with higher accuracy than reliable smaller networks ?

As we vary the size of the network, we note ρ the nb. of params. w.r.t. reference network
(36 millions parameters).

A fair comparison
For our results to be relevant, we will only compare networks that achieve the same accuracy.
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Beforehand: are All Layers Equals ?

Recall earlier : does our scenario verify the layerwise sensitivity to randomness?
Train with 1% fault rate on global, test with maximum fault rate per layer (i.e. 50%).
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Figure 3: Sensitivity analysis under uniform noise p = 1%
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Comparing LaNMax VS net configs. relative energy
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Difference in model size ⇔ difference in energy !
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Difference in memory reliability ⇔ difference in energy !
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Comparing LaNMax VS net configs. relative energy
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LaNMax optimised memory reliability ⇔ even less energy !
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Comparing LaNMax VS net configs. relative energy
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Comparing LaNMax VS net configs. relative energy
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Comparing LaNMax VS net configs. relative energy
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Aftermatch : layerwise sensitivity

We can plot the learned fault rate at � :
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Instead of unreliable small layers from our layerwise sensitivity experiment, we have achieved a
fault rate that prioritize unreliability on the largest layers. Good for E !
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Take-away

Neural nets are terribly good at learning robustness

Binary neural nets are more robusts than people thoughts, with the adequate tools (not
Dropout)

Exploit this robustness by learning a layerwise fault rate during training

Deploy a neural network on a server/embedded system at roughly a third of the storage
energy cost
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Take-away

Neural nets are terribly good at learning robustness

Binary neural nets are more robusts than people thoughts, with the adequate tools (not
Dropout)

Exploit this robustness by learning a layerwise fault rate during training

Deploy a neural network on a server/embedded system at roughly a third of the storage
energy cost

This work will be presented at AICAS 2020 and is accessible on Arxiv for details (arXiv:1912.10764
[cs.LG]).
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