Community consultation about heterogeneous integration

OCTOBER 25, 2019 | ANDREW FUNG

© 2019 and Reg. TM – CMC Microsystems

Webinar agenda

- (moderator) Andrew Fung, CMC Microsystems Group Lead, Microelectronics and MEMS
- Introduction to CMC Microsystems
- Heterogeneous Integration Roadmap: Integrated Photonics (Prof. Amr Helmy, U. Toronto and member of International Roadmap Committee)
- 2.5D Multi-Technology Silicon Interposer Platform (Gordon Harling, President and CEO, CMC Microsystems)
- Q&A, community feedback

What is CMC and its role?

www.CMC.ca

© 2019 and Reg. TM – CMC Microsystems

CMC Microsystems

- CMC provides services essential for the research and training required to advance Canada's digital economy:
 - Industry 4.0, autonomous vehicles, big data, Internet of Things (IoT), cyber defence and security, 5G, quantum computing, artificial intelligence (AI), and more!

- Academic and Industrial Users
 - Not-for-profit founded in 1984
 - Manages Canada's National Design Network[®]
 - Delivers micro-nano innovation capabilities across Canada

Lowering barriers to technology adoption

CAD

- State-of-the-art environments for successful design
- Selection of high-performance Computer Aided Design (CAD) tools and design environments
- Available via desktop or through CMC Cloud
- User guides, application notes, training materials and courses

🕒 CMC.ca/CAD

- Services for making working prototypes
- Multi-project wafer services with affordable access to foundries worldwide
- Fabrication and travel assistance to prototype at a university-based lab
- Value-added packaging and assembly services
- In-house expertise for first-time-right prototypes

CMC.ca/FAB

1	
	(11)
	3

Device validation to system demonstration

- Access to platform-based microsystems design and prototyping environments
- Access to test equipment on loan
- Access to contract engineering services

CMC.ca/LAB

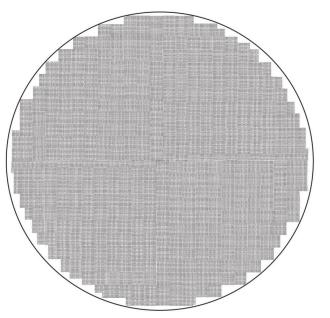
Heterogeneous Integration Roadmap: Integrated Photonics

Prof. Amr Helmy, U. Toronto Member of IEEE HIR International Roadmap Committee

© 2019 and Reg. TM – CMC Microsystems

- For presentations about the IEEE Heterogeneous Integration Roadmap, visit
- <u>https://eps.ieee.org/technology/heterogeneous-</u> integration-roadmap.html

2.5D Multi-Technology Silicon Interposer Platform

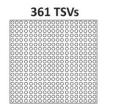

Gordon Harling, President and CEO, CMC Microsystems

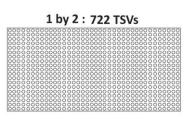
© 2019 and Reg. TM – CMC Microsystems

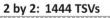
Silicon interposer – Wafer view

- <u>Method</u>:
- We start-off with an 8" wafer
- Pattern (array) TSVs uniformly across whole wafer
- No scribes or free area
- Removes limits to design size
- Standard tiles or custom arrays

Silicon interposer – Custom sizes

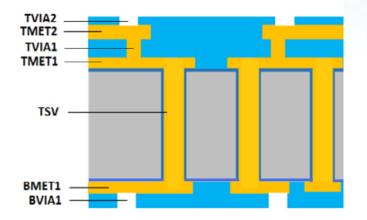





What we are doing for packaging?

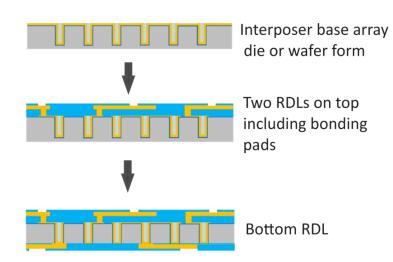
Silicon interposer – Standard Tiles

- Options:
 - Base array 1 cm2: 19x19 TSVs
 - 1x2 array: 19x38 TSVs
 - 2x2 array: 38x38 TSVs
- Benefits:
 - Inventoried
 - Reduced cycle time 4-6 weeks for prototyping your design
 - Access to Test Sockets



• <u>Very small</u> <u>sizes:</u>

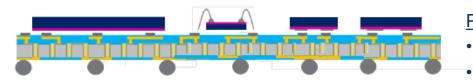
- 400µm thickness
- 2 top RDL
- 1 bottom RDL
- 5µm metal width / spacing
- TSV diameter: 100µm
- TSV pitch: 500µm
- $\frac{1}{15}$ Width _{PCB} metal
- $\frac{1}{2}$ thick_{bare die}


Silicon interposer – Cross-sectional view

Silicon interposer – Flexible manufacturing

Four process modules:

- 1. TSV Array formation
- 2. Top-side patterning
- 3. Bottom-side patterning
- 4. Component placement

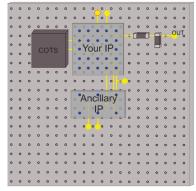

Modular approach:

- Wafer hand-off mirrored
- Finished product
- Intercept manufacturing flow outside of validated network

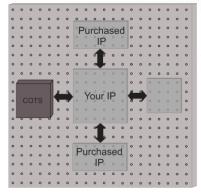
Silicon interposer – Component placement

Preferred method Flip-chip \rightarrow Also: Wirebonding

Process step 4:


- Ball drop bumping
- Stencil print
- Solder bumping
- Standard BGA: 100µm diameter 1mm pitch
- Underfill

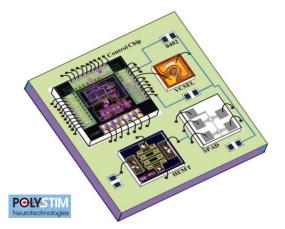
Why use the interposer



FLEXIBLE PROTO – IP Vendors

- Requirements vs Offer
- Variable demo for customer
- Customer: HW Eval, SW
- Close to final product: Speed, Size, Power

RAPID DEMO – SoC Developers


- Close to final IC: Speed, Power, Size
- De-risk of design
- 4-6 weeks turnaround time
- Early software development

Why use the interposer

FEASIBILITY – PROOF OF CONCEPT

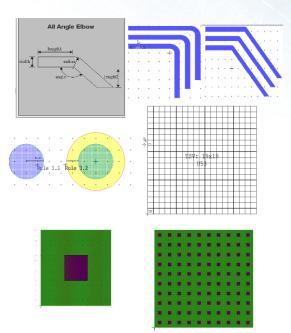
On Chip Near InfraRed spectroscopy: Portable brain imaging, Optical mammography

Benefits:

- Low-cost method
 - Demo
 - PoC
- Sellable form
- Increased capability: Speed, Size, Power
- Hiding complexity
- Excellent CTE
- No Outgassing
- Small Size,
 Portability

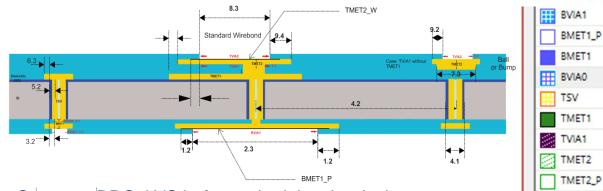
Why use the interposer?

	РСВ	Interposer		
Line width	75 μm (3 mils)	5 µm (0.2 mil)		
Line spacing	75 µm	5 µm		
Line thickness	30 µm	1 µm		
Relative Dielectric Const.	4.3	4		
Loss tangent	0.025	0.0015		
Spacing between layers	165 μm	1.5 μm		
Wiring density	130 lines / cm sq.	600 lines / cm sq.		


- Eliminate outgassing for pump down
- Wide temperature range

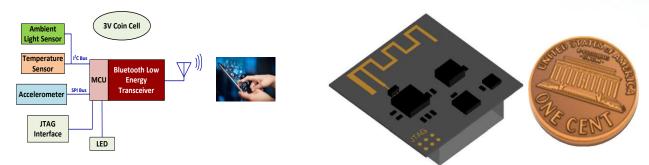
Process Design Kit (PDK)

- o Tanner Tools V2016 currently deployed
 - Curve tools add-on by softMEMS with G-S-G RF trace capability
 - Primitives, Cells for Pads, Contacts, TSV arrays and TSV connections
- o Design rules always up to date
- Library of standard components
- Common surface mount and WLCSP footprints



Process Design Kit (PDK)

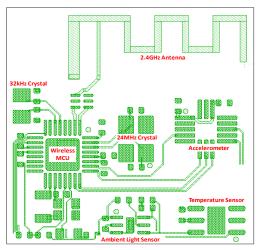
DRC Rules in User's Guide 0

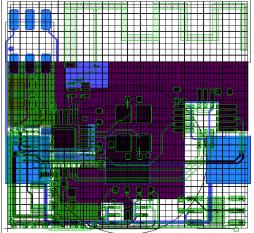

BMET1 BVIA0 TSV TMET1 TVIA1 TMET2 TMET2_P TVIA2

- Carry-out DRC, LVS before submitting the design 0
- Migrate your PCB designs 0

Reference design 1 – Reusable IP – Crowdsourcing approach

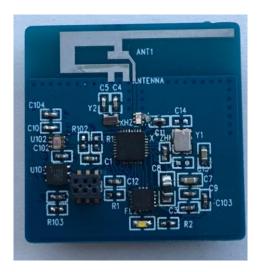
Compact BLE sensor node


- Light, temp sensors, accelerometer, CC2640 MCU, coin cell
- Antenna incorporated on silicon interposer!
- Sharing common blocks of circuitry with users
- Library of schematics, layouts



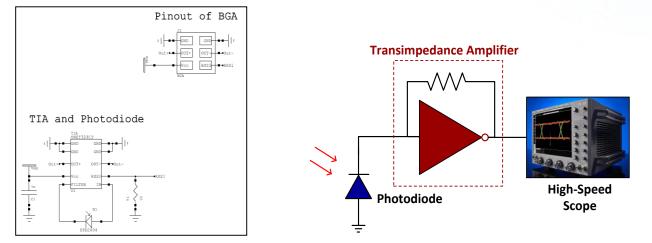
Reference design 1 – Reusable IP – Crowdsourcing approach

Compact BLE sensor node



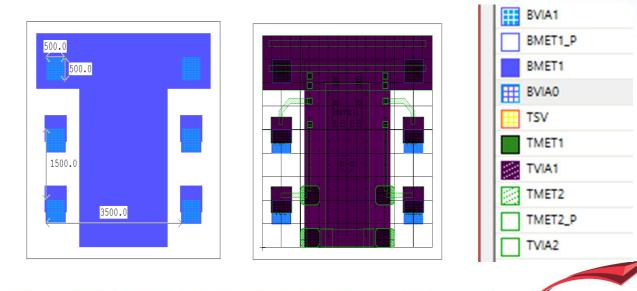
Current status

Reference Design 1 – BLE Sensor

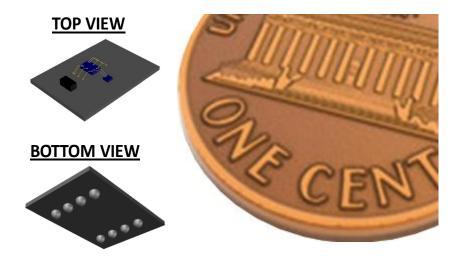

- Early PCB Version for FW Eval
- Published FW and Android App in December 2017
- Interposer version with integrated antenna (over TSVs) in design
- CMC plans on making FW available and modifiable for user's needs

Reference design 2 – Reusable IP – Crowdsourcing approach

Optical receiver front-end

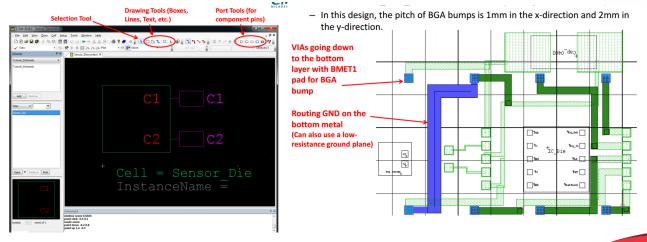


Reference design 2 – Reusable IP – Crowdsourcing approach


Optical receiver front-end

Reference design 2 – Reusable IP – Crowdsourcing approach

Optical receiver front-end



Tanner Toolkit Features

Fully downloadable User's Guides, Training Kits, Rules Decks and Design Tutorials

Test Chip – Process Control Module (PCM)

	1	2	3	4	5	6	7	8	9	10
A	1.0 ⊙	1.1 • • •	1.2 • • •	• •	• •	1.6 • •	• •	2.4 ⊙	2.0a,b ⊙	5.1 ⊙
в	O	• • •	O	• •	Ō	• • •	• •	⊙ 2.3	⊙ 2.2	· · · · · · · · · · · · · · · · · · ·
c	· •	· .	• •	• ⊙	• •	• 🖸		· •		• • •
D	0	· 0	O	· ·	• •	· 0		· •	· ⊙ · 2.6	· · · · · · · · · · · · · · · · · · ·
Е	• •	· •	· .	• •	. () 5.0	• •				· 0
F	• 1.5 • ⊙	• •	• •	· · · · ·	· •	.3	• • •	· · · · · · · · · · · · · · · · · · ·	• • • • 2.9	⊙ 2.8
G	• •	• •	O	• •	• •	• •	0	• • •	• •	0
н	• •	• •	• • •	• •	• •	· · ·	• •	• •	• •	• •
i.	· •	4.4 · ⊙	· .	• •	•	· •	· ⊙	· 🕢	· .	· •
J	• •	·	· O	• •	• · · · ·	· .	· 0	• •	· •	· 📀

Tests: 4-point resistance,

Contact chain,

Max current,

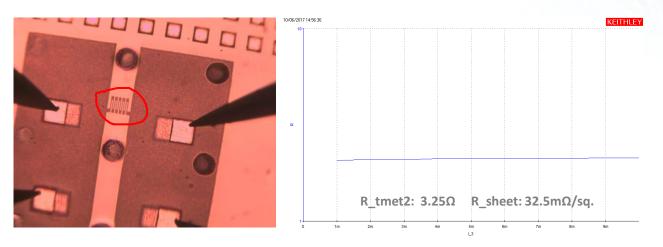
Continuity and Isolation,

S-Params on G-S-G

Test chip:

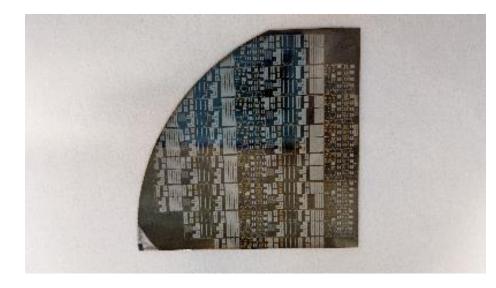
- Each supplier fabricates a PCM
- Choosing supplier according to test chip results

Suppliers:


•

- Design interception
 - Skill sets, Equipment, Nature of design

PCM – 4pt resistance



Follows: TMET1, BMET1, Contact chain, Max current, C&I

Current status

- PDK and tools ready
- New TSV process in development
- First runs of PCMs in 2020 for characterization

Community feedback

- What would help advance your technology R&D?
- What are your requirements for integration and packaging?
- Engage with CMC to develop platform technology.
- Other Q&A

• Contact:

andrew.fung@cmc.ca fab@cmc.ca

Coming up: NANOvember in Edmonton

