

RELIABLE SILICON SYSTEMS LAB

Probabilistic Sequential Multi-Objective Optimization of Convolutional Neural Networks

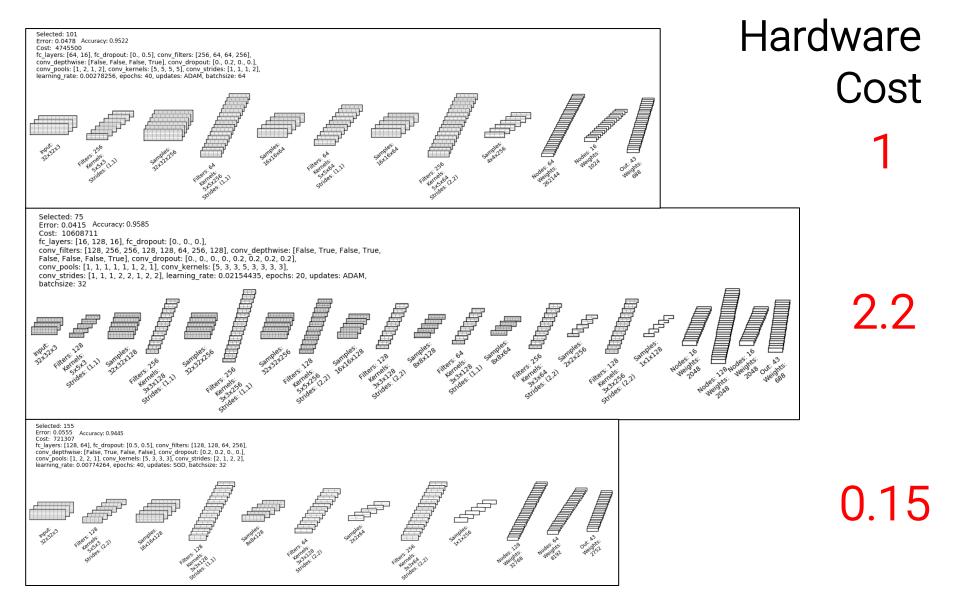
Zixuan Yin, Warren Gross, and **Brett H. Meyer** McGill University

December 8, 2020

So Many Hyper-parameters, So Little Time

- Artificial neural networks are appearing everywhere
 - Embedded and mobile devices
 - In the cloud, and at the edge of the IoT
 - Different domains have different constraints
- Hyper-parameter selection affects performance (*accuracy*) and cost (e.g., *energy* or *delay*)
 - E.g., number of layers, types of neurons, etc.
- We *must* jointly optimize software and hardware, but how?
 - No intuitive patterns in large design spaces

Architecture Search is Complex

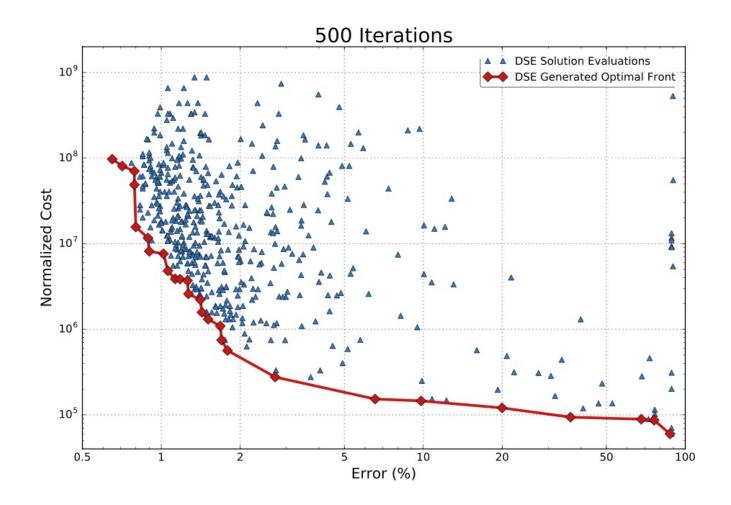


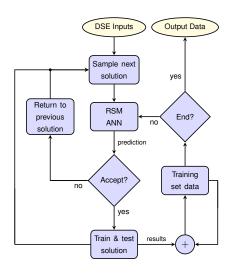
Ordinary People Accelerating Learning

- OPAL models the DNN design space with a many-dimensional *response surface* (hyperplane)
- OPAL is a *sequential, model-based* optimizer (SMBO)
- A meta DNN (*mDNN*) learns the relationship between target DNN (*tDNN*) hyper-parameters, and accuracy
 - Select a tDNN, predict its performance
 - If the tDNN is promising, evaluate it; results are used to retrain mDNN
- Returns a near-Pareto-optimal set
 - E.g., from high accuracy, high cost, to low accuracy, low cost, and everything in between

Example

Pareto-optimal front evolves with each iteration

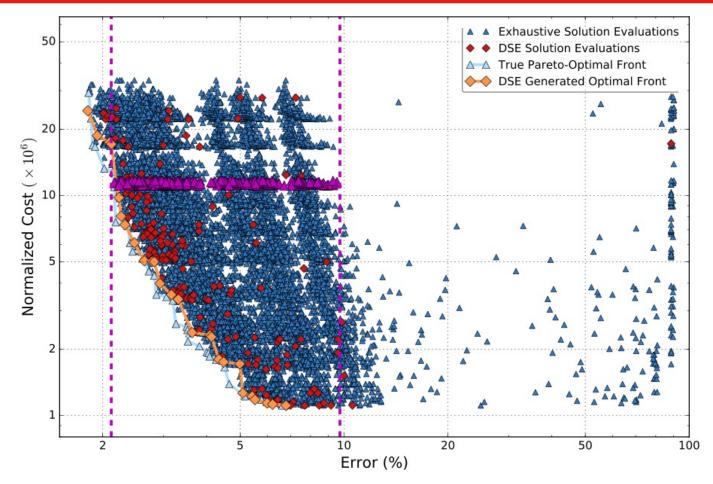




10⁷ configurations

- 1-2 CNN layers
- 8-128 filters per CNN
- Kernel: 1x1-5x5
- Max-pool: 2x2-4x4
- 1-2 FC layers
- 10-250 nodes per FC
- LR: 0.01-0.8

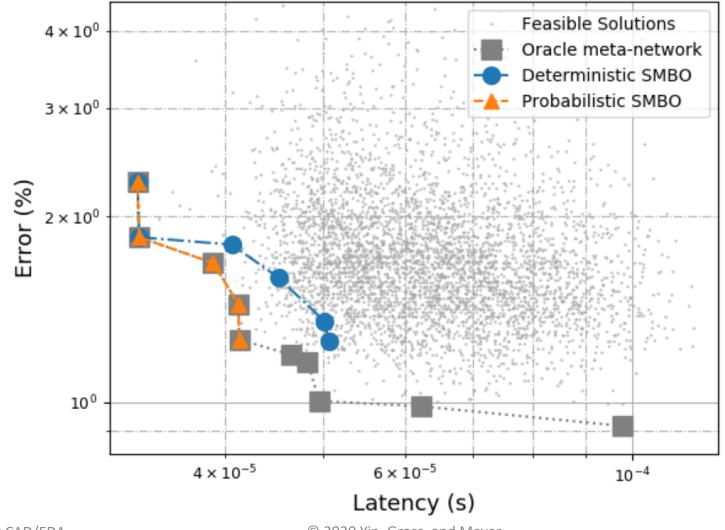
OPAL Gives the Best* Trade-offs



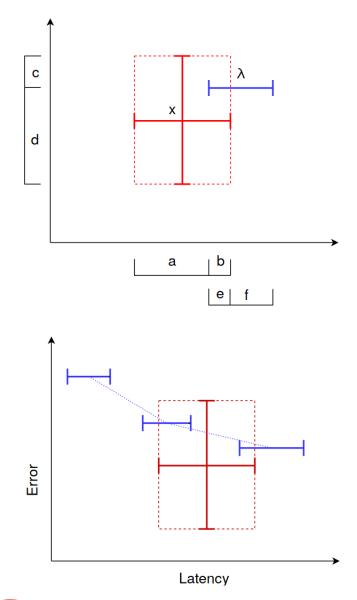
- Majority of explored points are near the Pareto-optimal front
- Many fewer *objectively bad* solution are evaluated

A New Challenge(r) Has Appeared

• We only find good solutions quickly if we make good predictions



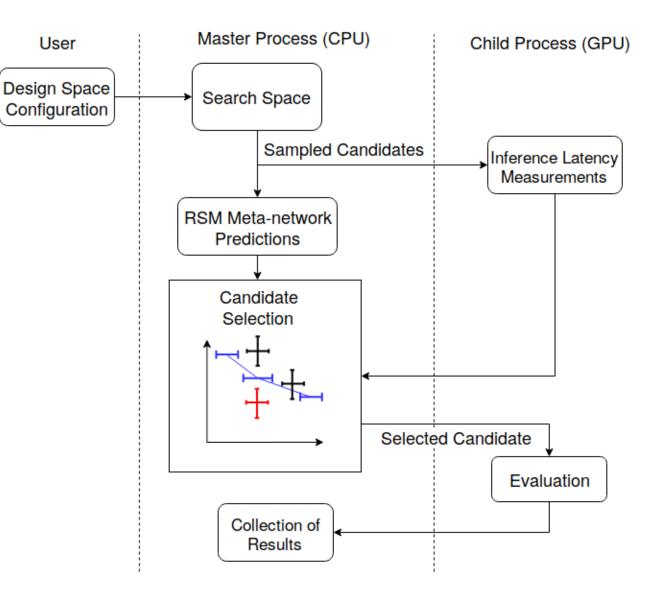
Probabilistically Pareto-Optimal DNNs



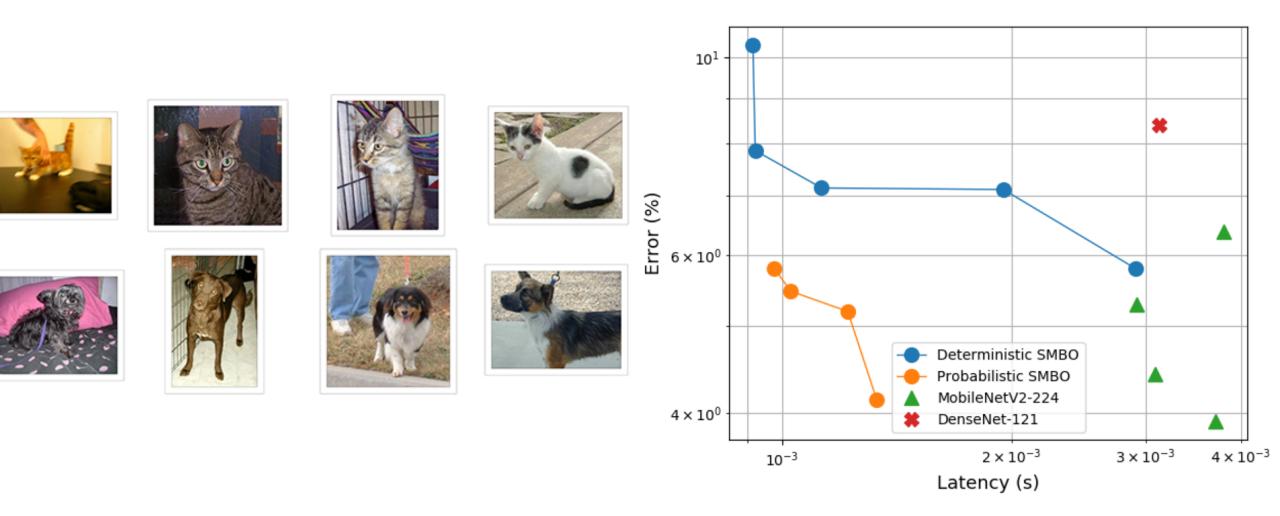
- Uncertainty in candidate comparison → poor choices
 - Strong candidates are discarded
 - Weak candidates are evaluated
- *Probabilistic Pareto Efficiency* (PPE) captures the likelihood a candidate advances the POF

$$PPE(x|\Lambda) = \prod_{\lambda \in \Lambda} P(\lambda \not\prec x) + \sum_{\lambda \in \Lambda} P(x \prec \lambda)$$

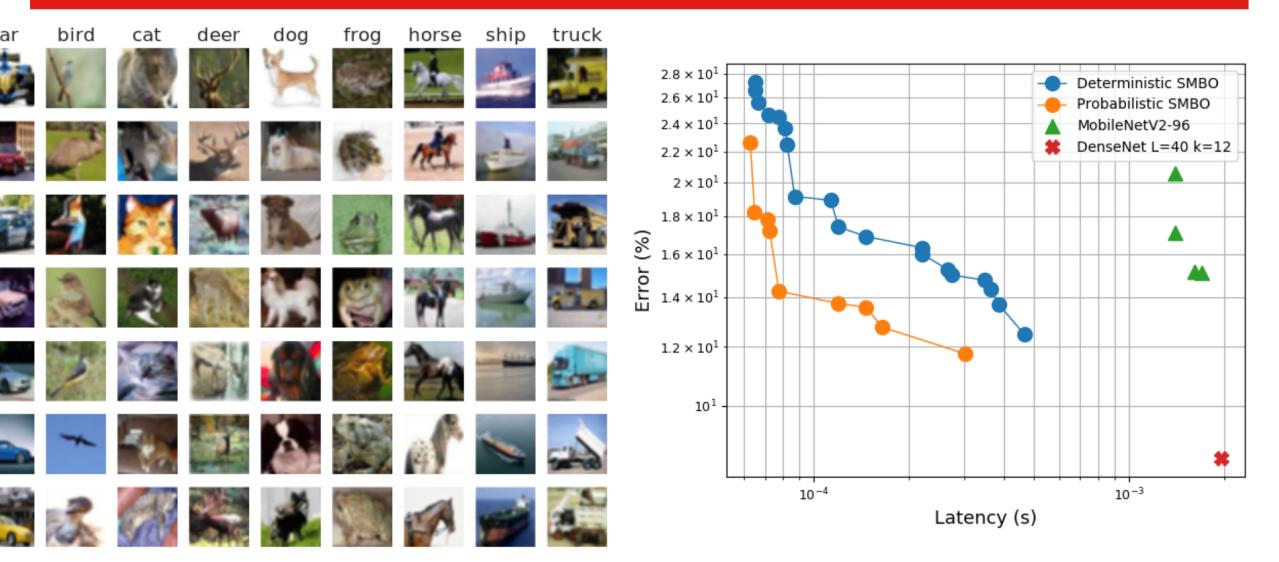
Searching with Probabilistic Pareto Efficiency



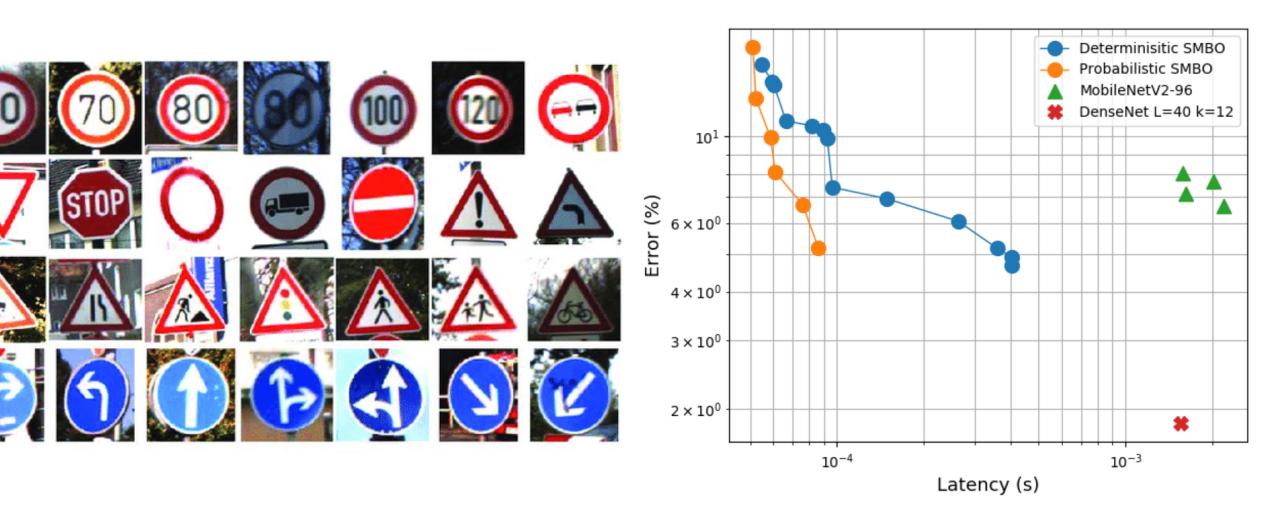
Results: Cats vs Dogs



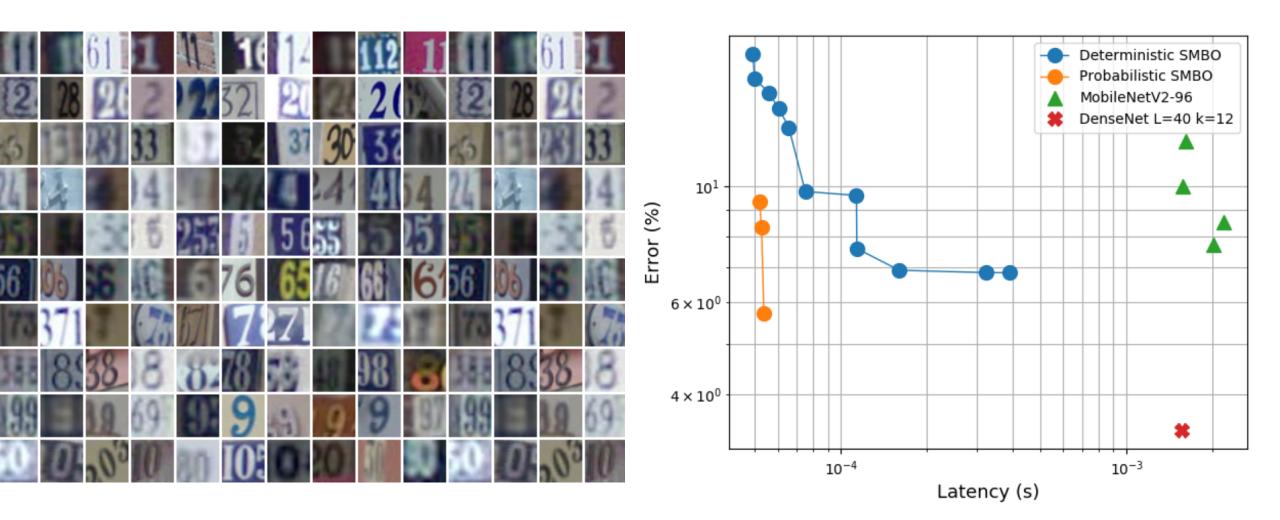
Results: CIFAR-10



Results: German Traffic Signs

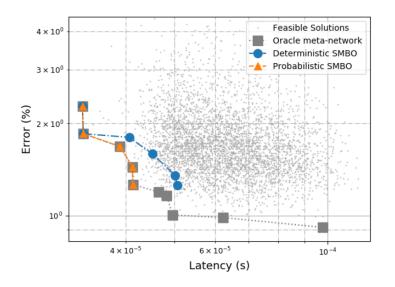


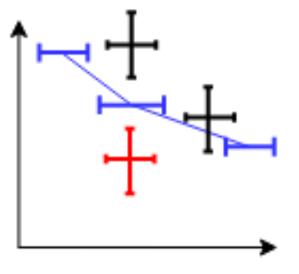
Results: Street View House Numbers

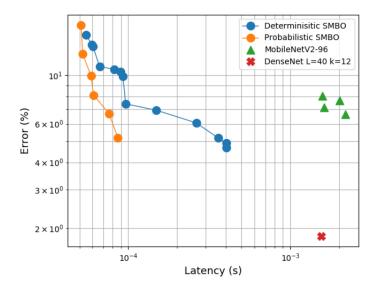


Conclusions

- SMBO optimization depends on accurate performance estimation to make good choices
- Accounting for uncertainty in candidate selection improves SMBO performance dramatically







References

S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, "Neural networks designing neural networks: Multi-objective hyper-parameter optimization," *ICCAD 2016*.

Z. Yin, W. J. Gross, and B. H. Meyer, "Probabilistic sequential multiobjective optimization of convolutional neural networks," *DATE 2020*.

Thank you! Questions?