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Why Machine Learning in EDA?
o Limitations of current Algorithmic based EDA/CAD flows:
 Some problems are too complex for handwritten rules

• Congestion Estimation, Routing Prediction, Selection of 
Optimal Flow, etc.

 The rules of a task are constantly changing
• FPGA architectures and constraints imposed, etc.

 Nature of the data itself keeps changing
• Increasing size and complexity of architectures and 

applications

oBenefits of Machine Learning for CAD:
Data-driven
No explicit programming
May assist in cutting CPU time & improve QOR
Provides guidance to the flow
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ML for CAD seems like a perfect match!

Algorithm-Driven CAD

Data-Driven CAD



RTL Synthesis

Design Entry

Bit Stream

Machine Learning in FPGA CAD Flow

Machine 
Learning 

Framework 
Technology 

Mapping

Circuit 
Placement

Global and 
Detailed Routing

Timing Analysis

Machine Learning + FPGA CAD Algorithms = Smart Flows
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Examples of ML in FPGA Placement
Several problems in FPGA placement 
can be targeted using ML including:

1. Congestion:
• Estimation, 
• Forecasting, 
• Management

2. Routability prediction
3. Flow selection/recommendation
4. Timing estimation
5. …….

Placer

Netlist

Architecture

Placed Netlist to be routed
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FPGA Placement Problem
Given a circuit in the form of a netlist, and an FPGA architecture

oMap the components in the netlist onto locations (resources) on the FPGA such that:

o Optimize Objectives: Minimize  wirelength, delay, congestion, etc.
o s.t Constraints: based on FPGA Architecture (no overlap, legality control set constraints …) 

LUT DSP

BRAM

FF

LUT FF

FF

Netlist FPGA
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FPGA Analytical Placement

• Analytic placement approach
1: Convert netlist to graph using Net model
2: Perform pin propagation
3: repeat
4:   solve non-linear equation system
5:   partition solution to enforce legality

constraints
6: until termination criteria satisfied
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• Prior approaches to placement used Simulated Annealing.
• Recently, more attention has been directed towards analytic 

placement, which scales better on large problem instances.
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GPlace3.0

WL-driven 
Global Placement

Preplacement

Star+ Solver

Bipartitioning Legalization

Find min. window

LUT Sharing

LUT bi-partitioning

FF bi-partitioning

DSP bi-partitioning

BRAM bi-partitioning

Congestion-driven
Global Placement

Cell (LUT) Inflation

Star+ Solver

Bipartitioning Legalization

Find min. window

LUT Sharing

(LUT Density) 
bi-partitioning

FF bi-partitioning

DSP bi-partitioning

BRAM bi-partitioning

Phase I Phase II

Detailed Placement
(DOISM)

ISM 
(minimize Ext. Pins)

ISM 
(minimize Wirelength)

Phase III

Congestion Estimation

Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. 
Grewal, S. Areibi, and A. Vannelli, “GPLace3.0: 
Routability Driven Analytic Placer for UltraScale FPGA 
Architectures,” ACM Transaction on Design 
Automation of Electronic Systems, vol. 23, no. 5, pp. 
66:1–66:3, August 2018.
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Congestion Estimation: MLCong

D. Maarouf, A. Al-hyari, Z. Abouwaimer, T. Martin, A. Gunter, G. Grewal, S. Areibi, A. Vannelli                       
“A Machine Learning Based Congestion Estimation for Modern FPGAs”,                                           

International Conference on Field Programmable Logic & Applications (FPL 2018), Ireland, pp. 427-434



Congestion
Congestion occurs when the demand
for routing resources exceeds the 
supply in some region of a design

2 channels available3 connections

Congestion leads to:
• Placements solutions with excessive wirelength
• Degraded performance of the Router  
• Subsequent routing stage may fail
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Features
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• Four features are calculated for each G-Cell of the FPGA
• Each feature is designed to capture routability information at each switch

f2: Pin Count (Density)

f3: NCPR (5x5)

f4: NCPR (9x9)

f1: Wire Length Per Area



Design #LUTs (util) #Flops (util) #RAMB36 #DSPs #Control 
Sets

Rent
Exponent

FPGA-1 50K (9%) 55K (5%) 0 (0%) 0 (0%) 12 0.4
FPGA-2 100K (19%) 66K (6%) 100 (6%) 100 (13%) 121 0.4
FPGA-3 250K (47%) 170K (16%) 600 (35%) 500 (65%) 1281 0.6

FPGA-4 250K (47%) 172K (16%) 600 (35%) 500 (65%) 1281 0.7
FPGA-5 250K (47%) 174K (16%) 600 (35%) 500 (65%) 1281 0.8
FPGA-6 350K (65%) 352K (33%) 1000 (58%) 600 (78%) 2541 0.6
FPGA-7 350K (65%) 355K (33%) 1000 (58%) 600 (78%) 2541 0.7
FPGA-8 500K (93%) 216K (20%) 600 (35%) 500 (65%) 1281 0.7
FPGA-9 500K (93%) 366K (34%) 1000 (58%) 600 (78%) 2541 0.7
FPGA-10 350K (65%) 600K (56%) 1000 (58%) 600 (78%) 2541 0.6
FPGA-11 480K (89%) 363K (34%) 1000 (58%) 400 (52%) 2091 0.7
FPGA-12 500K (93%) 602K (56%) 600 (35%) 500 (65%) 1281 0.6

Benchmarks
We start with 12 ISPD benchmarks:
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#LUTs #FFs #BRAMs #DSPs #CSETs #IOs Rent Exp

44K – 518K 52K – 630K 0 - 1035 0 - 620 11 - 2684 150 - 600 0.4 – 0.8

• We also used 372 
benchmarks synthesized
using an internal netlist-
generation tool based 
on Generate Netlist 
(Gnl), and provided by 
our industrial partner –
Xilinx Inc. 



MLCong: An ML Framework for Congestion

372 Ultrascale
Benchmarks

FPGA 
placer

Placement 
file results

Xilinx Detailed 
Router

Congestion features
• NCPR
• WLPA
• etc

𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑 𝒇𝒇𝟒𝟒 label

Extract 
congestion map 
with TCL script

Filtering

Training

FPGA 
placer

Placement 
file results

New
Circuit Prediction Model

Congestion features
• NCPR
• WLPA
• etc

Testing

Training

Predicted Congestion 
of New Circuit

Deployment
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Congestion Estimation Techniques:  A Comparison
Cong. 

Estimation 
Methods

Accuracy Metrics

SAD AANE RMSE

MLCong 2891.28 6.73 5.93

GR 3126.27 7.34 6.41

fGREP 4351.59 9.66 8.93

NCPR 5254.11 11.47 10.07

WLPA 6185.44 14.20 12.30

WLPA VivadoNCPR GRfGREP MLCong
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• Sum of Absolute Error (SAD)
• Average Absolute Normalized Error (AANE)
• Root Mean Square Error (RMSE)

MLCong produces congestion 
heatmaps that are close to 
those produced by Vivado 

detailed router



Comparison of Machine Learning Models

Cong. 
Estimation 
Methods

Congestion Metrics Prediction Accuracy Measures

SAD AANE RMSE 𝑹𝑹𝟐𝟐

MLCong 2891.28 6.73 5.93 85.24

𝑯𝑯𝑲𝑲𝑴𝑴𝑴𝑴 [1] 7983.41 19.23 15.29 60.39

[1] C. Pui, G. Chen, Y. Ma, E. Young, and B. Yu. Clock-Aware UltraScale FPGA Placement with 
Machine Learning Routability Prediction. In International Conference on Computer Aided Design, 

pages 929–936. ACM, 2017.

𝐺𝐺𝑀𝑀𝑀𝑀 Vivado𝐻𝐻𝐾𝐾𝑀𝑀7
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Congestion 
Estimation 

Method
# Failures Routed-WL 

(Norm.)

Router 
Runtime 
(Norm.)

Placer 
Runtime 
(Norm.)

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 2 1.00x 1.00x 1.00x

mPFGR 2 1.00x 1.19x 1.17x

No Estimation 225 1.03x 3.15x 0.47x

Case Study

On Average MLCong is 300x faster than the global router as a standalone congestion estimation technique



Congestion Estimation: DLCong

D. Maarouf, A. Shamli, T. Martin, G. Grewal, S. Areibi                                                                       
“A Deep Learning Framework for Predicting Congestion during FPGA Placement”,                                     

International Conference on Field Programmable Logic & Applications (FPL 2020), Sweden, pp. 138-144



DLCong: Congestion Estimation via DL
In this work, we claim that: 

• The performance of our previous work (MLCong [1]) can be improved by using                
a deep learning Convolutional Encoder Decoder (CED), that is coined DLCong.
DLCong is capable of capturing global behavior of the detailed router by training on feature maps 

(i.e., images) rather than local individual switches.
 It is also capable of modeling the non-linear relationships between placement features and routing 

resources  on the FPGA.
• DLCong achieves a prediction accuracy of 94% 

• A 9% improvement in accuracy over MLCong.
• Scales well with increasing congestion.
• It’s inference time is a few milliseconds.
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• CED consists of five layers in the encoder and the 
decoder portion.

• The input to the CED are the feature maps.
• The output of the CED is the estimated congestion.
• Convolutional layers capture the spatial relation of a 

switch with its surrounding switches.

Deep Learning Encoder-Decoder



DLCong: Comparison with State of the Art

Unstructured metrics Structured metrics
Method GAME(3) GAME(4)

WLPA 7900.8 9242.9

NCPR5 7845.3 8547.9

NCPR9 6062.7 7112

fGREP 6179.7 6855.2

MLCong 4551.13 5117.9

DLCong 252.6 322.7

Method RMSE MAE R2

WLPA 9.925 7.195 65.06%

NCPR5 9.428 7.527 53.76 %

NCPR9 10.205 8.103 52.61%

fGREP 8.98 6.391 68.39%

MLCong 5.678 4.109 85.55%

DLCong 3.74 2.87 94.33%
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DLCong improves upon MLCong by 1.42x, 1.51x and 8.78% for RMSE, MAE and R2

GAME: Grid Average Mean Absolute Error “determines if shape is accurate”



Congestion Estimation: Visual Comparison
• A visual comparison of various congestion estimation methods was used.
• The intensity of congestion in the upper part of the congestion map is underestimated 

by linear techniques (fGREP), while DLCong is predicting it accurately.
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DLCong: Case Study
• DLCong was tested on placement solutions produced by other state-of-the-

art academic tools and commercial placement tools other than GPlace
• The results indicate that DLCong can generalize to other placers congestion 

with an accuracy up to 91.28%

Placer Routable 
placement RMSE MAE R2

Ripple 336 7.3 4.86 82.45%

UTplace 317 5.37 4.03 89.17%

Vivado 262 5.21 3.88 91.28%

24



Outline

FPGA Placement

Congestion Estimation

Conclusions & Future work

Outline

Routability Prediction

Adaptive Smart Flow



Routability Prediction: DLRoute

A. Alhyari, A. Shamli, Z. Abuwaimer, S. Areibi and G. Grewal,                                                                                    
"A Deep Learning Framework to Predict Routability for FPGA Circuit Placement,"                                            

International Conference on Field Programmable Logic & Applications (FPL 2019), Barcelona, Spain, pp. 334-341



Routability Driven Placement
oIn this work we present a novel, deep-learning framework based on Convolutional Neural 

Networks to accurately predict the routability of a placement.
oIntegrating such a predictor in an FPGA placement flow can assist in improving QoR/CPU

Unroutable Placement due to Congestion
27

 Congestion free, routable placement

Today’s largest FPGA 
designs can easily 

take hours to place 
with no guarantee of 

routing success

It is crucial for the 
placement tool to 
know as early as 

possible whether a 
design is routable



Routability Prediction: Benefits
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An early estimate of routability can help the placer: 
I. Avoid pursuing dead-end paths that do not lead to a feasible routing solution, 
II. Enables the placer to improve its optimization strategy!



Congestion Estimate

WLPA

Pin Count

NCPR5x5

NCPR9x9

Congestion
Features (Local)

Placement
Congestion

Map

DLRoute
Routability Prediction

Routability
Label
{0,1}

Routing Prediction: DLRoute
The proposed DL model for predicting routability is integrated within Gplace:

• Provides feedback to further improve optimization
• Avoids wasting time running the router on a placement which will fail to route
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DLRoute: CNN Architecture

• The network takes a congestion heat map of size 480x168 as input
• Four convolutional layers with a depth of 32 filters are used to extract features
• Two fully connected layers are used to classify the flattened vector of features
• A sigmoid output neuron generates a binary label of {0, 1} as routability label
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DLRoute Framework

31



Accuracy Precision Sensitivity Specificity M Train Time Test Time

97.4% 0.961 0.980 0.970 0.876 115.8 (min) 7.8 (ms)

Phase Accuracy Precision Sensitivity Specificity M

Global (Wirelength) Placement 0.988 0.955 0.993 0.986 0.967

Global(Congestion) Placement 0.958 0.944 0.962 0.954 0.915

Detailed Placement 0.983 0.987 0.995 0.826 0.864

Overall Performance

Performance on Each Placement Phase

DLRoute: Performance Results
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DLRoute Case Study #1: Saving Router Time
• The proposed routability predictor was tested on Xilinx Vivado placer and several state-of-the-art 

academic placers.
• Each placer was used to generate placements for the 372 benchmarks and routed.
• Each placer had a success/failure rate to route these benchmarks.
• These placers could have avoided performing routing if DLRoute were used.
• The savings in time ranges from 42.7% to 82.1%

Placer
Routability CPU Time

Saving
Routable Non-Routable Routed Unrouted Total

UTPlace[8] 317 (85%) 55 (15%) 315473 308239 623712 49.4%

Ripple[9] 336 (90%) 36 (10%) 338626 253180 591806 42.7%

Vivado2015.4 262 (70%) 110 (30%) 209402 964381 1173783 82.1%

Vivado2018.1 327 (88%) 45 (12%) 527227 402704 929931 43.4%
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DLRoute Case Study #2: Feedback to the Placer

• Six highly-congested benchmarks 
were unroutable by GPlace3.0

• Integrating the CNN into a 
placement tool was used to 
adaptively improve its 
optimization strategy.

• To be able to route highly-
congested placement, a feedback 
from the CNN is used to control
the cell inflation parameters.

• The six highly-congested 
benchmarks are now routable.

34

Benchmark
Routing Results

Wirelength CPU Time
(seconds)

FPGA5-6 9900742 2639

FPGA5-11 11814937 6634

FPGA5-16 11858397 5497

FPGA5-19 12069961 4897

FPGA5-26 12035954 3235

FPGA7-7 9540692 3095
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Forecasting Congestion: DLForecast

A. Al-hyari, A. Shamli, T. Martin, S. Areibi and G. Grewal                                                                              
“An Adaptive Analytic FPGA Placement Framework Based on Deep-Learning”,                                               

2020, ACM/IEEE Workshop on Machine Learning for CAD (MLCAD 2020), pp. 3–8,Virtual Event, Iceland



DLForecast
oIn this work we propose a deep-learning framework to accurately 

forecast the congestion that will be present at subsequent placement
iterations based on congestion features obtained during the early 
phases of placement.

oWe then show how this forecast can be used early in the placement 
flow to look ahead and make smart optimization decisions with the goal 
of reducing placement runtimes while maintaining quality of results.
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DLForecast Approach: Objective
• DLForecast is used to accurately predict  

the congestion that could be present at 
later placement iterations.

• Results are then fed back to the placer and 
forwarded to DLRoute to obtain the 
probability of achieving a feasible routing 
solution.

• A controller within GPlace can then use the 
routing probability and congestion forecast 
to decide between several alternative 
courses of action.

38

Estimation of congestion after x iterations

Probability of a placement being routed



DLForecast Framework

o The input to the model is:
I. A set of concatenated placement feature 

maps (images) each describing a particular 
feature present in the current placement.

II. Ground-truth features used as a label.
o The Model is used to forecast the congestion

feature maps of subsequent iterations 
including the final iteration of Phase I

o Once trained it is deployed and integrated 
within a placement tool.

39



DLForecast Architecture
• The input of the network is the current placement feature maps (size 480x85).
• The output of the network is the predicted congestion at later iterations.

40



DLForecast Accuracy Metrics
We employ two most commonly used metrics for quantifying prediction accuracy:

• Mean Absolute Error (MAE)
• Coefficient of Determination (R2)

Metric MAE R2 SSIM

Test Result 0.026 93.5% 0.898
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DLForecast Accuracy Metrics
• We also employ the Structural Similarity 

Index Metric (SSIM)
• SSIM is used to measure the similarity

between images.
• Unlike MAE and R2, SSIM accounts for

luminance distortion, contrast distortion, and 
loss of correlation.

• The DLForecast predicted WLPA feature 
map for FPGA5. The evaluation metrics 
for this feature are:

• MAE = 0.025, 
• R2 = 94.01% and 
• SSIM = 0.902
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Benchmark TGPlace3.0 TGPl+DLFor
% Imp. % Wirelength

FPGA-1 76 55 27.98% +2.02%
FPGA-2 134 88 34.10% +0.01%
FPGA-3 424 270 36.35% -0.27%
FPGA-4 432 278 35.70% +1.04%
FPGA-5 508 293 42.30% +2.29%
FPGA-6 901 543 39.72% -2.22%
FPGA-7 948 576 39.22% -0.88%
FPGA-8 991 592 40.30% +0.01%
FPGA-9 1277 768 39.83% -2.49%

FPGA-10 1423 852 40.11% +0.98%
FPGA-11 1229 736 40.16% +0.58%
FPGA-12 1767 1043 40.96% -1.46%

Total 10111 6095 39.72% -0.03%

Runtime/QoR(Wirelength) Comparison
• Columns 2 and 3 compare the runtimes of 

GPLace3.0 with that of DLForecast
respectively.

• Column 4 shows that GPLace3.0 with 
DLForecast achieves runtime    
improvements in the range of 27% to 40%.

• Column 5 shows the percentage increase
(+) and decrease (-) in wirelength of 
GPLace3.0 with DLForecast compared to 
GPLace3.0.

• It is clear that the increase/decrease in 
wirelength are small, with no overall 
difference in wirelength across the 12 
benchmarks.
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Benchmark RippleF [3] % Imp. UTPlcae [10] %Imp. DLFor WL
FPGA-1 352628 -5.07% 356769 -3.85% 370503
FPGA-2 645400 -0.59% 642108 -1.11% 649238
FPGA-3 3262106 +3.34% 3215087 +1.93% 3153013
FPGA-4 5509661 +1.88% 5409765 +0.07% 5406070
FPGA-5 9968955 -3.85% 9659958 -7.17% 10352730
FPGA-6 6180104 +3.61% 6487628 +8.18% 5956791
FPGA-7 9639639 -1.39% 10104837 +3.28% 9773651
FPGA-8 8156951 +0.10% 7879022 -3.43% 8149034
FPGA-9 12305192 +2.62% 12369055 +3.12% 11982531

FPGA-10 7139694 +3.84% 8794515 +21.94% 6865298
FPGA-11 11022815 +6.81% 10196038 -0.75% 10272573
FPGA-12 7363451 -1.47% 7755443 +3.66% 7471911

Total 81546596 +1.40% 82870225 +2.98% 80403343

State-of-the-art Placers: Comparison
oWe next show that the final routed 

wirelength obtained by integrating 
GPlace3.0 with DLForecast is 
comparable to that obtained by 
other state-of-the-art analytic 
placement tools.

oColumn 3 shows that GPlace3.0 with 
DLForecast obtains a small 1.40%
overall improvement in wirelength 
compared to RippleFPGA.

oColumn 5 shows that GPlace3.0 with 
DLForecast obtains an even larger 
2.98% overall improvement in 
wirelength compared to UTPlace.
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 Algorithmic CAD based on analytic solutions need human guidance
 Data-Driven ML/DL CAD can aid designers with fast QoR evaluation and 

guide algorithmic CAD with optimal inputs
 Machine Learning can further assist EDA in several directions
 Adaptive Hyperparameter tuning
 Guidance to designer to choose best options
 Enhance productivity of optimization techniques

Conclusions & Future Work
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Guelph FPGA CAD Group
Website: https://fpga.socs.uoguelph.ca

Email: sareibi@uoguelph.ca

https://fpga.socs.uoguelph.ca/
mailto:aalhyari@uoguelph.ca


Our Website

We are currently adding qualified graduate students to our team. Contact us if interested.
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