Enabling FPGAs for Heterogeneous Cloud Computing

Paul Chow

High-Performance Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Toronto

April 16, 2018

How do we put FPGAs in the Cloud?

- What makes a computer?
- Current state of FPGA computing
- What's needed to compute with FPGAs
- What's needed to compute with FPGAs in a cloud
- FPGA computing at UofT

2

What's a Computer?

• Provide a baseline for what we are talking about

FPGA Computer Programming

But, HLS fixes this!

Not really...

April 16, 2018

Consider

08048918	pushl	%ebp
08048919	movl	<pre>%esp,%ebp</pre>
0804891b	subl	\$0x4,%esp
0804891e	movl	\$0x0,0xfffffffc(%ebp)
08048925	cmpl	\$0x63,0xfffffffc(%ebp)
08048929	jle	08048930
0804892b	jmp	08048948
0804892d	nop	
0804892e	nop	
0804892f	nop	
08048930	movl	<pre>0xfffffffc(%ebp),%eax</pre>
08048933	pushl	%eax
08048934	pushl	\$0x8049418
08048939	call	080487c0 <printf></printf>
0804893e	addl	\$0x8,%esp
08048941	incl	0xfffffffc(%ebp)
08048944	jmp	08048925
08048946	nop	
08048947	nop	
08048948	xorl	<pre>%eax,%eax</pre>
0804894a	jmp	0804894c
0804894c	leave	
0804894d	ret	

x86 motherboard + x86 assembler

FPGA board + Verilog

April 16, 2018

Adding HLS is just

main()
int A[10],sum;
{
 sum = 0;
 for(i = 0; i <10; i++)
 #pragma HLS PIPELINE II=I
 sum =+ A[i];
}</pre>

Still need to build your own I/O services

Which is like

main()
int A[10],sum;
{
 sum = 0;
 for(i = 0; i <10; i++)
 sum =+ A[i];
}</pre>

x86 motherboard + gcc

April 16, 2018

What makes a computer?

main()
int A[10],sum;
{
 sum = 0;
 for(i = 0; i <10; i++)
 sum =+ A[i];
}</pre>

Linux provides services and an abstraction from the physical hardware

April 16, 2018

CMC Embedded and Heterogeneous Computing Workshop

10

Recent FPGA Computing Platforms

Environment

SDACCE MAXELER Environment Technologies MAXIMUM PERFORMANCE COMPUTING

April 16, 2018

What makes them computing platforms?

- Hardware is abstracted
- Memory is managed
- Runtimes that manage configuration, data transfers, accelerator hardware
- Like what you expect when you run your C programs

Programming Interfaces: OpenCL[™]

Portable across generations and families of CPUs and FPGAs

20 Intel® QuickPath Interconnect (Intel® QPI) April 16, 2018

CMC Embedded and Heterogeneous Computing Workshop

ĕ

Commercial FPGA Clouds

- Microsoft internal infrastructure
 - Baidu too?
- Public Amazon FI, Huawei, Tencent, Alibaba
 - tools + some cores
 - Maybe OpenCL
 - Commercial services using FPGAs

WHAT DO WE NEED?

April 16, 2018

The Parts (Before the Cloud)

Software

April 16, 2018

CMC Embedded and Heterogeneous Computing Workshop

16

The Parts (Before the Cloud)

Software

Hardware

April 16, 2018

HOW DO WE GET THERE?

Start with Software Ecosystem

- Build from software as much as possible
 - Already lots of knowledge and infrastructure
- OpenStack is starting point for several groups
 - Cloud resource management
 - IBM, Huawei, UofT
- Virtualization
 - Means many things!
 - Sharing, abstraction

April 16, 2018

Our Physical Architecture

FPGA Boards in Cluster

- Alphadata 7v3 * 4 Virtex 7 -690T
 - ~690K Logic cells, 3600 DSP Slices , 52.9 MB BRAM
 - 2 * 10G SFP Networking ports
 - I6 GB off-chip memory
- Alphadata 8v3 * 8 Virtex Ultrascale XCV095
 - ~1176K Logic cells, 768 DSP Slices, 60.8 MB BRAM
 - 2 * 100G QSFP Networking Ports
 - I6 GB off-chip memory
- Alphadata 8k5 *8 –Virtex Ultrascale KUII5
 - ~1450K Logic cells, 5520 DSP Slices,
 - 2 * IOG SFP Networking ports
 - I6 GB off-chip memory
- Fidus Sidewinder * 20 Zynq Ultrascale + MPSoC
 - ARM A53 (4 core) + ARM R5 (2 core)
 - ~1140 Logic Cells, 1910 DSP Slices, 128 MB BRAM
 - 2 * 100G QSFP Networking Ports
 - I6 GB off-chip DRAM for ARM, I6 GB off-chip DRAM for FPGA

FPGA Hypervisors

Non-MPSoC

April 16, 2018

ENABLING FLEXIBLE NETWORK FPGA CLUSTERS IN A HETEROGENEOUS CLOUD DATA CENTER

Naif Tarafdar, Thomas Lin, Eric Fukuda,

Hadi Bannazadeh, Alberto Leon-Garcia, Paul Chow

University of Toronto

FPGA 2017

April 16, 2018

Problems We Target

- Large multi-FPGA systems
- Abstractions for building applications on FPGA clusters
 - User provides application
 - We build the cluster and deploy it with the application
- Easy scalability of system

28

April 16, 2018

Galapagos System View

FPGA Cluster Generator

Output to VM with FPGA Tools \checkmark

Individual FPGA Projects

29

April 16, 2018

User

Galapagos System View

FPGA Cluster Generator

Output to Cloud Manager

Command For Resource Allocation

Commands For Connecting FPGAs to Network

April 16, 2018

User

Galapagos System View User

FPGA Cluster Generator

April 16, 2018

HETEROGENEOUS VIRTUALIZED NETWORK FUNCTION FRAMEWORK FOR THE DATA CENTER

Naif Tarafdar, Thomas Lin, Nariman Eskandari, David Lion, Alberto Leon-Garcia, Paul Chow University of Toronto

FPL 2017

Overview

-Circuit switched network -Circuit includes CPU and FPGA -Kernels are physically distributed -Individual FPGAs provisioned with Openstack, along with network -Shell abstracting network (10G) and PCIe

-Partial Reconfiguration flow

Service Chain Scheduler

- Resource allocation
 - OS image
 - Parameters: cores, PCIe devices, NIC ports
- Bitstream generator

Service Chain Scheduler

- For each FPGA, assign and register virtual port
- Create chain between source and sink of network and intermediate VNFs

April 16, 2018

Daniel Rozhko

MULTI-TENANT HYPERVISOR (SHELL)

April 16, 2018

High-Level (Long-term Plan)

P

Key Components

- Virtualized access to external I/O (i.e. abstracted, shared, and secured)
- Soft vs. Hard shell distinction

Nariman Eskandari

A HETEROGENEOUS MPI

April 16, 2018

- Message Passing Interface
- Used as a programming model for HPC

40

MPI

- Another abstraction layer on Galapagos
- MPI in this work is programming model for heterogenous platform (CPUs and FPGAs)

41

The code for FPGAs and CPUs are the same.

- First applications Jacobi, MD, K-means
 - I to 90 ranks tested on 6 FPGAs

43

Conclusions

- Lots of focus on HLS today it's needed, not sufficient
- Some working now on other layers need identified
- To achieve a cloud ecosystem for using FPGAs, much more is needed it's a big stack
- Need a coordinated effort to enable cloud computing with FPGAs cannot be haphazard \rightarrow need a plan
 - Open source is only way to harness enough resources
 - How do we do this?

April 16, 2018

CMC Embedded and Heterogeneous Computing Workshop

44

Acknowledgements

Stuart Byma, Naif Tarafdar, Eric Fukuda, Daniel Ly-Ma, Daniel Rozhko, Roberto DiCecco, Nariman Eskandari,

Qiang Liu, Clark Shen, Charles Lo, Varun Sharma, Sean Nijjar, Camilo Vega

SAVI – Prof. Alberto Leon-Garcia, Hadi Bannazadeh, Thomas Lin

April 16, 2018

CMC Embedded and Heterogeneous Computing Workshop

45

Questions?

46

April 16, 2018