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My	Research	

•  Building	error	resilient	and	secure	software	systems	

•  Three	main	areas:	
–  Error	Resilience	Techniques	[DSN’18A[DSN’18B]][SC’17]
[DSN’17][SC’16][DSN’16][DSN’15][DSN’14][DSN’13][DSN’12]	

–  Software	Reliability	Engineering	[ICSE’18][ASE’17][ICSE’16]
[ICSE’15][ICSE’14A][ICSE’14B][ASE’14][ASE’15][ESEM’13]	

–  IoT	Security	[FSE’17][ACSAC’16][EDCC’15][HASE’14]	
	

•  This	talk	
–  Error	Resilience	Techniques	
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Motivation 
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•  Neural network applications are widely deployed nowadays 

•  Deep learning neural network (DNN): Robots, Cars, Data centers  

•  DNN accelerators are crucial 

•  High throughput for real-time inferencing 

•  Nvidia NVDLA and Google TPU 



4	

●  DNN applications are widely deployed in safety critical applications  

○  Self-driving cars – specialized accelerators for real-time processing 

●  Silent Data Corruptions (SDCs) 

○  Results in wrong prediction of DNN application 

○  Safety standard requires SoC FIT<10 overall (ISO 26262) 

Motivation 



Soft	Errors 
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=	0001	 =	0101	



Soft	Error	Problem	

•  Soft	errors	are	increasing	in	computer	systems	

6	Source:	Shekar	Borkar	(Intel)		-		Stanford	talk	



Current Solutions 

7	

●  Traditional Solutions 

○  DMR for all latches in execution units 

○  ECC/Parity on all storage elements 

 

●  Recent Work 

○  Generic micro-architectural solutions 

○  DNN-algorithm agnostic 

Incurs high overhead 

Nonoptimal for DNN 
systems 



Deep learning Neural Network 
(DNN) 
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DNN Accelerator Architecture 
(e.g., Eyeriss – MIT) 
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Goal 
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●  Understand error propagation in DNN accelerators - fault injection 

○  Quantification 

○  Characterization 

●  Based on the insights, mitigate failures: 

○  Efficient way to detect errors 

○  Hardware: Selective duplication 

○  Software: Symptom-based detection 



Fault Injection: Parameters 
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●  DNNs 

●  Data Types 

○  Fixed Point (FxP): 16-bit and 32-bit 

○  Float Point (FP): Full- and half-precision 



Fault Injection Study: Setup 
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●  Fault Injection 

○  3,000 random faults per each latch in each layer 

●  Simulator 

○  DNN simulation in Tiny-CNN in C 

○  Fault injections at C line code 

●  Fault Model 

○  Transient single bit-flip 

○  Execution Units: Latches 

○  Storage: buffer SRAM, scratch pad, REG 



Silent Data Corruption 
(SDC) Consequences 
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A	single	bit-flip	error	à	misclassification	of	image	by	the	DNN	



Characterization:	Research	Questions	

•  RQ1:	What are SDC rates in different DNNs using 
different data types? 

•  RQ2:	Which bits are sensitive to SDCs in different 
data types? 

•  RQ3:	How do errors affect values that result in 
SDCs?  

•  RQ4:	How does an error propagate layer by layer?	
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SDC Types 
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SDC1:  
 - Mismatch between winners in faulty and fault-free execution 

 
SDC5:  

 - Winner is not in top 5 predictions in the faulty execution 
 
SDC10%:  
  - Confidence of the winner drops more than 10% 
 
SDC20%:  

 - Confidence of the winner drops more than 20% 
 



RQ1: SDC in DNNs 
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1. All SDCs defined have similar SDC probabilities 

2. SDC probabilities are different in different DNNs 

3. SDC probabilities vary a lot using different data types 



RQ2: Bit Sensitivity 
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FP data types: 

FxP data types: 
1.  High-order bits are vulnerable 
2.  Larger dynamic value range allows more vulnerable bits 

Only certain exponent bits are vulnerable to SDCs 



RQ3: Value Changes 
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SDC 
 
 

Benign 
 
 

AlexNet, PE Errors, Float16 
 
 

If a neuron value is changed to be a large value 
under a fault, it likely causes SDC 



RQ4: SDC in Different Layers 
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1. Layers 1&2 have lower SDC probabilities in AlexNet and CaffeNet 

2. SDC probability increases as layer numbers increase  



Mitigation	Techniques	

•  Data	type	choice	

•  Symptom-based	Error	Detection	

•  Selective	Latch	Hardening	

•  Algorithmic	Error	Resilience	(Ongoing)	



Mitgation: Data Type Choice 
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Restraining dynamic value 
range reduces FIT in fixed 

point data types 

*Scaling factor = 2 by each tech. generation 
All raw FIT rates are projected based on the FIT at 28nm [Neale, IEEE TNS] 



Mitigation: Symptom-Based Error 
Detector (Software) 
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SDC 
 
 

Benign 
 
 

AlexNet, PE Faults, Float16 
 
 

Check range 

Recall: 92.5% 
Precision: 90.21% 

Overheads negligible 



Mitigation: Selective Latch 
Hardening (Hardware)  
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Latch hardening design choices: 

~20% overhead provides 
100x reduction in FIT 



Ongoing	Work:	Algorithmic	Resilience	
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Deriving	ML	algorithms	resilient	to	perturbations	
	-	Small	changes	à	Similar	outputs	



Conclusions 
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Characterized error propagation in DNN accelerators 

based on data types, layers, value types & topologies 

Mitigation Methods 

-  Choosing Restrained Data Types   

-  Symptom-Based Error Detection 

-  Selective Latch Hardening  

-  Algorithmic Resilience 

  Questions ? karthikp@ece.ubc.ca 


