Automotive Embedded Systems Research: Recent Developments and Future Infrastructure Needs

Dr. Mohammed A. S. Khalid
April 16, 2018

University of Windsor
Department of Electrical and Computer Engineering
Seminar Outline

• Automotive Embedded Systems (AES) Overview
• Open Research Problems in AES (my view)
• Recent Research: HLS for a computational task used in ADAS
• Infrastructure for AES Research
• Conclusions
• References
Automotive Embedded Systems (AES) Overview
• Today’s cars are basically very complex embedded systems on wheels!
 – Contain tens of Electronic Control Units (ECUs) based on low to high end processors.
 • Each ECU can be considered an embedded system by itself
 – Many cameras, radars, sensors and actuators distributed throughout the vehicle
 – ECUs are connected using sophisticated in-vehicle networks
 • CAN, LIN, MOST, FlexRay and most recently Ethernet for automotive

• Features and Constraints of AES
 – High safety and reliability requirements
 – Real time constraints for many ECUs, e.g. engine controller
 – Harsh operating environment (both hot and cold temperature extremes)
 – Very cost sensitive, compared to areas such as Avionics
Automotive Embedded Systems

1 backbone, 13 nodes
8 subnets, 1-8 local nodes
52 nodes total
• Main tasks performed by AES
 – **Powertrain and chassis control**: engine, brake, steering, automatic transmission, etc.
 – **Vehicle body functions**: door locks, sliding windows, airbag, lighting, instrument display, etc.
 – **Infotainment**: vehicle navigation system, audio, cameras, video displays, etc.
 – **Integrated systems and services**: park assist, lane departure warning and assist, traction control, electronic stability control, automatic braking system, etc.
Design Challenges and Open Research Problems in AES (my view)
Disclaimer: not including all open problems

Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) are two of the most important drivers of R&D in AES

- Entails lots of computationally intensive tasks that require powerful computing platform that provides real time execution of these tasks
- Possibly heterogeneous computing systems (HCS) based on multi-core CPUs, GPUs, FPGAs, DSP processors, etc.
- Need powerful but low cost and energy efficient computing platforms

Increasing number of ECUs to handle new features is not sustainable.

- There is considerable interest in “ECU consolidation”, i.e. map multiple tasks to a single ECU
 - This introduces it’s own technical challenges such as changes in design flow, impacts on timing and security, etc. [1]
• Large scale and complex software development for AES is a big challenge
 – How to achieve high reliability and safety
 – Software reuse for reduced design / verification cost and time
 – AUTOSAR (AUTomotive Open System ARchitecture) standard is a good start by automotive industry to address this challenge
 • See [2] for more details

• Challenges in design and verification of in-vehicle networks – especially support for automotive ethernet [3]
• Support for short range Vehicle-to-Everything (V2X) communication (includes V2V, V2I, V2D, V2P, V2G)
• Security is a major issue – keep the vehicle safe from hacking and even hijacking
Recent Research: High Level Synthesis (HLS) and Evaluation of Radar Signal Processing Algorithm for FPGAs [4]
Introduction: Background on High Level Synthesis

• What is HLS?
 – Optimized hardware synthesis from high level specification (C, C++, SystemC etc.)
 – Increases designer productivity by enabling design and verification at a higher level of abstraction
 – Enables reduced time to market and extensive design space exploration (DSE)
 – In recent years HLS CAD tools have become increasingly effective in terms of Quality of Results (QoR) achieved
 • Competitive with manual HDL-based design at the RTL level using VHDL or Verilog
 – Many options can be given manually to help HLS CAD tool optimize the design.
Introduction:
Why High Level Synthesis?

• Advantages of HLS
 – Design using High Level Languages (C, C++, etc.)
 • Scalability, portability and extendibility
 • Easy to learn/code.
 • High Productivity
 – Faster time to market
 • Lower NRE design cost
 – Utilization by Software Engineers
 • Do not need extensive hardware design knowledge
 – Automated Optimization and Design Space Exploration (DSE)
 • Compiler handles most of the optimizations
 • Fast design synthesis enables extensive DSE which is not feasible with RTL level design methodology
Introduction:
Why not Hardware Description Language?

• Disadvantages of HDL
 – Hardware Description Languages (Verilog, VHDL etc.)
 • Full access but difficult to design Hardware
 • Not scalable
 • Time consuming
 • Specific training required
 – Slow time to market
 • High cost
 – Software Engineers
 • Will require extensive training to effective use HDLs
 – Optimization
 • Manually optimize HDL code
 – Low productivity
Introduction:
High Level Synthesis tools

• There are quite a few HLS compilers, examples:
 – **Xilinx: Vivado HLS**
 – Intel (Altera): FPGA SDK for OpenCL
 – ADS: Agility
 – BlueSpec Inc: BlueSpec
 – Calypto Design Systems: Catapault C
 – Cadence: C to Silicon
 – UofT LegUp

• All HLS tools work in a similar manner
 – Synthesize High level specification into an optimized RTL design
 – Provide the HDL files in VHDL/Verilog, etc.
Introduction:

- Why Vivado HLS over others?
 - HDL code for the DSP algorithm was originally written/synthesized with Xilinx Vivado
 - Xilinx Vivado and Xilinx Vivado HLS are cross compatible
 - It is one of the most popular choices for HLS
 - It will be a fair comparison between the HLS and HDL capabilities in general.
Introduction: Xilinx Vivado HLS

• Major points
 – Similar to other tools
 • Converts code written in High Leve Languages and converts it into RTL
 • Provides us with synthesis results like resource usage, latency etc.
 – Has support for C, C++ and SystemC
 – Traditional C/C++/System C will work with few minor changes due to the specific syntaxes for HW design
 • This was done to add support for bitwise operations and I/O etc.
 – Very huge library for pre-built common hardware designs (IP cores)
 • Eg: FFT, FIR etc.
 – Not compatible with other HLS tools.
 – RTL design available after synthesis
Introduction: Xilinx Vivado HLS

- HLS CAD flow:
RADAR Signal Processing
Introduction

• Controller for a Tri-mode Radar system
• High Level Synthesis of the controller
• Comparison between the HLS model and the existing HDL model [5]
• Radar System Applications: ADAS
 – For collision detection and/or avoidance, adaptive cruise control
• Algorithm (high level specification):
 – The algorithm is based on the existing HDL model of the FPGA based controller for the radar
RADAR Signal Processing
Design Overview

- Tri-mode RADAR System overview
RADAR Signal Processing
Algorithm

• Transmitter & switch control
 – Provides the modulating output to the DAC for VCO tuning
 • (4.5 V to 6.1 V) → (0 to 1023)
 – Controls which beam port to be used
 • 100 (Decimal equivalent of 4): For beam port 1
 • 010 (Decimal equivalent of 2): For beam port 2
 • 001 (Decimal equivalent of 1): For beam port 3

• Receiver Flow & Signal Processing
 – Provides the sampling clock to the ADC
 • 20 MHz generated from the system clock
 – RPU described in next slide
RADAR Signal Processing Algorithm - RPU

- The main signal processing flowchart for the system.
• Significantly less design time (62% reduction) required to synthesize the design using HLS-based design methodology.
 – implies less time to market!
Evaluating HLS Results
Performance Metric (Latency)

- Latency

<table>
<thead>
<tr>
<th>Latency in</th>
<th>RTL-based design</th>
<th>HLS-based design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Cycles</td>
<td>20185</td>
<td>10863</td>
</tr>
<tr>
<td>Time in milliseconds</td>
<td>2.20185 ms</td>
<td>1.0863 ms</td>
</tr>
</tbody>
</table>

- Around 2X speed up was achieved (for the same FPGA, Virtex 7)
Summary: HLS for RADAR SP

- HLS of a RADAR SP system was performed.
- Existing HDL-model of the system was used for comparison
- Significantly less time to market for the HLS-based design
- Achieved 2X speed up overall
- Significantly higher resource utilization when compared to the HDL-based design (synthesized for maximum possible speed)
- Despite that, no more than 5% of the available resources on Viretx 7 FPGA were used.
- **We can conclude that HLS is much superior for hardware design for radar signal processing applications**
Infrastructure for AES Research
• Mentor Graphics Automotive Solutions
 – https://www.mentor.com/mentor-automotive/

• CAD tools and/or platforms available for research in following automotive areas
 – Connectivity (V2X)
 – Electrification (Electric vehicle related)
 – Autonomous (AV and ADAS)
 • Can look into acquiring DRS360 Platform for Autonomous Driving
 • Potential research enabler for Canadian universities in the areas of AV and ADAS
 – Architecture of automotive embedded systems
 • Volcano Automotive: design tools and run time software for automotive ECU design
• Xilinx Automotive Solutions
 • https://www.xilinx.com/applications/automotive.html

• ADAS and AV
• Security
• Motor control
• In Vehicle Infotainment (IVI)
• Driver Information (DI) – HMI and UX
• Can look into Xilinx Automotive Boards and Kits offerings and evaluate them for their utility in automotive research
• Intel (Altera) Automotive Solutions
 https://www.altera.com/solutions/industry/automotive/overview.html
• Intel automotive offerings seem to be more limited compared to Mentor and Xilinx
• Can look into Intel Automotive Boards and Kits offerings and evaluate them for their utility in automotive research
Conclusions

• Automotive Embedded Systems is a high growth area with lots of potential for researchers
 – ADAS and AV are key R&D drivers
 – Need new and innovative automotive system architectures
 – Platform based development will dominate

• Lots of open research areas for EDA/CAD and embedded system design research communities to explore and contribute innovative solutions for future Automotive Embedded Systems [1]
 – Need increased interaction with automotive community traditionally dominated by mechanical engineers
 – Retrofit existing solutions in embedded and EDA/CAD domains for the automotive domain
References

References

[6] Xilinx Vivado High Level Synthesis