
1/26

CMC ‘18

S. Magierowski

Accelerating Front-End Bioinformatics

Sebastian Magierowski

Electrical Engineering & Computer Science (EECS)
York University

Toronto, Canada

CMC Configure Your Research Platform

2/26

CMC ‘18

S. Magierowski

104

14

We decided to show two processes stimulated by VEGF: remodel-
ing of cellular adhesion sites and the actin cytoskeleton and expres-
sion of genes. . Fig. 14.5 includes two details from the painting. In
spite of the complexity of this image, it only captures a few small
aspects of VEGF signaling.

 Th ere is nothing quite like the study of signaling networks to
convince us of the random process of evolution and its eff ectiveness
as a design process. When looking at enzymes like lysozyme or
trypsin, I see the cell as a fi nely honed machine, with every protein
optimized over millennia for perfect function. When looking at cell
signaling networks, however, I see the cell as an old jury-rigged
automobile, barely held together with bailing wire and duct tape. I
can just imagine generation aft er generation of changes, randomly
adding a new kinase here or a backup phosphatase there, slowly
tuning the fl ow of information. As a result, our cells are fi lled with
thousands of receptors, kinases, phosphatases, and transcription
factors and a host of other signaling proteins that together decide
how to respond to our world minute by minute and year aft er year.

 . Fig. 14.4 Enhanceosome. This illustration of an enhanceosome is cobbled
together from several diff erent structures, each determining a portion of the
whole assembly. Missing pieces are shown schematically with circles (PDB
entries 1t2k, 2pi0, 2o6g, 2o61, 1qwt)

 Chapter 14 · Cellular Signaling Networks

• Bioinformatics
– computers + biological data (NIH)

• more narrowly…
– analysis of biomolecules

• their make-up, structure, and function
• proteins, DNA, RNA, etc.

• “Front-End”
– computations done close to the

raw sample measurements
• often with real-time preference

“Front-End” Bioinformatics

Accelerating Front-End Bioinformatics

[Goodsell’16,©Springer]

3/26

CMC ‘18

S. Magierowski

• Making bioinformatics find solutions faster
– of course

• With specialized computing hardware
– our goal is to build platforms

– Edico Genome DRAGEN bioinformatics processor
• on Amazon EC2 F1 (Xilinx VU9P Ultrascale+)

“Accelerating”

Accelerating Front-End Bioinformatics

[CC BY-SA 3.0]

4/26

CMC ‘18

S. Magierowski

• Interested in custom ASICs
– following a top-down route to get there

• GPUs
– application-level

• FPGAs
– kernel-level
– RIFFA+PCIe

• SoCs
– kernel/ISA-level
– RISC-V+RoCC

Our Acceleration Ambitions

Accelerating Front-End Bioinformatics

5/26

CMC ‘18

S. Magierowski

• Finding similarities between databases
– sequence database homology searching

Bioinformatics “Solutions”

Accelerating Front-End Bioinformatics

6/26

CMC ‘18

S. Magierowski

• query: ~100 character sequence (from alphabet of 20)
– target: >25M recorded sequences

• > 8G characters (amino acids)

• “Solutions” come back in seconds–minutes
– list of sequences adhering to some matching criteria

For Example...Query a Protein

Accelerating Front-End Bioinformatics

7/26

CMC ‘18

S. Magierowski

• Then apply biological criteria to develop insight
– computational biology

• Examples…
– What other proteins are closely related?
– What genes are responsible for the protein?
– What proteins exhibit distant relations?
– What protein domains are shared?

• These insights may be used to arrive at scientific/clinical
insight

– Evolutionary history
– Identify disease
– Design drugs

Bioinformatics “Answers”

Accelerating Front-End Bioinformatics

8/26S. Magierowski

CMC ‘18

Common Algorithmic Patterns

• dynamic programming
– sequence comparison

• search
– look for sequence patterns

• sort
– transform one string to another

• combinatorics
– find sub-string combinations

that match other strings
• graph algorithms

– sequence assembly

• clustering
– molecular evolution

• classification and inference
– Bayesian networks
– neural networks

Accelerating Front-End Bioinformatics

…

…

output
layer

hidden layer

hidden layer

input
layer

y(t)

x(t)

9/26

CMC ‘18

S. Magierowski

• Focus on DNA sequencing where…
– …measurement has gotten very fast
– …hardware has gotten very small

• Benefits from high-speed
embedded computing

– at least in part

Front-End Sequencing

Accelerating Front-End Bioinformatics

[Dcrjsr CC BY-SA 3.0]

10/26

CMC ‘18

S. Magierowski

• Sequencing
– Take given DNA sample…

– …and figure out its particular base sequence

DNA Sequencing...a quick reminder

Accelerating Front-End Bioinformatics

G T G T G A T C C A T G C A T G G A

11/26

CMC ‘18

S. Magierowski

• This translation is just one step of a process

DNA Sequencing Pipeline

Accelerating Front-End Bioinformatics

1. DNA isolation 2. Fragmentation

3. DNA amplification 4. DNA-to-signal transduction

ACCTGTCGT
CGCACATAA
TCTAGTCTA

GCAAAAATC
AGTGCAACC
GCCTAATGC

TCAAAACGG
CCAATTTAC
TCTCCCGAG

CAAATGCGC
CTAGATTAC
CTGTGTCAT

ACGGACGGT
CCTTGAGAA
TTTCCGCAC

5. Basecalling 6. Alignment

7. Sorting, 8. De-duplication
9. Local align, 10. Quality score

11. Variant calling

12/26

CMC ‘18

S. Magierowski

• Sequencer miniaturization
– 100.0 kg
– 000.1 kg
– ~1000X smaller

• ~10-20X slower
• ~10% less accurate

Sequencing Trend

Accelerating Front-End Bioinformatics

13/26S. Magierowski

CMC ‘18

Nanopore Sequencing

• Nanopore sequencing
– Small hole (nanopore)
– DNA passes through nanopore
– Generates small current
– Convert signal to text

Accelerating Front-End Bioinformatics

4. DNA-to-signal transduction
ACCTGTCGT
CGCACATAA
TCTAGTCTA

GCAAAAATC
AGTGCAACC
GCCTAATGC

TCAAAACGG
CCAATTTAC
TCTCCCGAG

CAAATGCGC
CTAGATTAC
CTGTGTCAT

ACGGACGGT
CCTTGAGAA
TTTCCGCAC

5. Basecalling

14/26S. Magierowski

CMC ‘18

Nanopore Front-End Signals

Accelerating Front-End Bioinformatics

[©Oxford Nanopore Tech]

15/26

CMC ‘18

S. Magierowski

• Not just nanopores
• A successful blend of…

– nanotech
• sensors

– microtech
• mixed-signal CMOS
• microfluidics

Nanopores + CMOS

Accelerating Front-End Bioinformatics

AMP

FILT

ADC

[©Oxford Nanopore Tech]

16/26S. Magierowski

CMC ‘18

Computational Burden

– ~500 DNA bases/sec./channel

– ~500 channels (1 cm2)

– 500�500 = 250,000 bases/sec.
• 1 human genome / 3.5 hours

– ~1000 DNA bases/sec./core

– 250,000/1000 = 250 cores needed
• ~25 W / core

– ~25�250 ~ 6,000 W
• for real-time operation

Accelerating Front-End Bioinformatics

Patent Application Publication Feb. 26, 2015 Sheet 4 0f 17 US 2015/0057948 A1

Fig. 8

200 200.5 201 201.5 202 202.5 203 203.5 204 204.5 205
?me®

Fig. 9

0 1'0 2'0 3'0 4'0 5'0 0'0 7'0 8'0 9'010011'012'013'0140150160
Index

Patent Application Publication Feb. 26, 2015 Sheet 4 0f 17 US 2015/0057948 A1

Fig. 8

200 200.5 201 201.5 202 202.5 203 203.5 204 204.5 205
?me®

Fig. 9

0 1'0 2'0 3'0 4'0 5'0 0'0 7'0 8'0 9'010011'012'013'0140150160
Index

Patent Application Publication Feb. 26, 2015 Sheet 4 0f 17 US 2015/0057948 A1

Fig. 8

200 200.5 201 201.5 202 202.5 203 203.5 204 204.5 205
?me®

Fig. 9

0 1'0 2'0 3'0 4'0 5'0 0'0 7'0 8'0 9'010011'012'013'0140150160 Index

EVENT signal

BASE
CALLER

ACGCGGAATTCGTCG

GCCCTCTAATATTCAG

TTCGAATATCCATAGT

base
CALLS

DNA
(variety of strands)

17/26

CMC ‘18

S. Magierowski

for: L = 0 to # of models/DNA (1 – 3)
for: i = 0 to # of events/DNA strand ~(103 – 106)
for: j = 0 to # of states/model ~(102 – 104)
for: k = 0 to # transitions ~(4 – 102)
load T(k)
calc E(k,event(i))
calc P(k) = T(k) �E(k,event(i))
end
calc P(j) = max{P(k)}
end
calc max{P(j)}
end
end

Basecalling Algorithm

Accelerating Front-End Bioinformatics

event sample

170B iterations / sec. à 3000 GOPS

18/26

CMC ‘18

S. Magierowski

for: L
for: i
for: j
for: k
load T(k)
calc E(event(i))
calc P(k) = T(k) �E(event(i))
end
calc P(j) = max{P(k)}
end
calc max{P(j)}
end
end

GPU Basecalling: Loop Unrolling

Accelerating Front-End Bioinformatics

19/26

CMC ‘18

S. Magierowski

• 4096 threads
– 128 threads per block
– 32 blocks

• Threads assigned to
– inner loop calculations
– intermediate sorting

• Asynchronous convergence to
local maximum

GPU Basecalling: Internal Loop Unrolling

Accelerating Front-End Bioinformatics

20/26

CMC ‘18

S. Magierowski

• Organizing dataflow
– data preparation
– data processing
– interleave data sent to GPU

• Overall GPU gave ~6X speed-up in this case
– GTX 680

Streamline Communications

Accelerating Front-End Bioinformatics

CPU GPU
data

result

prep 0 time

proc 0

prep 1 prep 2

proc 1

prep 3

proc 2

prep 4

proc 3

prep 5

proc 4 proc 5
CPU

thread 1
CPU

thread 2

GPU
threads

21/26

CMC ‘18

S. Magierowski

• For finer algorithm-to-hardware mapping
• RIFFA

– Reusable Integration Framework for FPGA accelerators
• from UCSD

– open-source comms between FPGA core and CPU
– runs over PCIe

• In the process of implementing basecalling

FPGA Acceleration

Accelerating Front-End Bioinformatics

CPU FPGA
data

result

22/26

CMC ‘18

S. Magierowski

• First-party DMA

RIFFA Enabled CPU-FPGA Acceleration

Accelerating Front-End Bioinformatics

Integrated
Memory

Controller
(IMC)

PCIe
Controller

RIFFA
PCIe

endpoint

Main
Memory

RIFFA
DMA Bus
Master

CORE
LOGIC

base-
caller.

c

CPU FPGA

custom
designcustom

design

23/26

CMC ‘18

S. Magierowski

• In the FPGA: Hardware Interface
– a simple handshaking protocol

• val/rdy settings, etc.
– core can implement a simple controller to handle it

• In the CPU: Software Interface
– a simple data transfer API is available

• C/C++, Python, Java, Matlab
– fpga_send(): CPU à FPGA
– fpga_recv(): CPU ß FPGA
– duplex comms possible with multithreading

RIFFA Hardware/Software Interface

Accelerating Front-End Bioinformatics

CPU FPGA
data

result

24/26

CMC ‘18

S. Magierowski

• RIFFA: ~ 800 MB/s transfer bandwidth
– PCIe 3.0 (1 lane), ~80% of peak

– downstream (CPU-to-FPGA)

• ~ 10% of resources consumed
– Virtex-7 (28-nm CMOS)

• Core basecaller implementation
– 100-MHz clock, Virtex-7

– 40% FPGA and software overhead

– 170,000 bp/s (1 human genome per 5 hours)

– 5 W

Performance Potentials

Accelerating Front-End Bioinformatics

25/26

CMC ‘18

S. Magierowski

CS250 Lab Assignment 3 (Version 100913), Fall 2013 3

The RoCC Interface

In the Rocket coprocessor interface, the Rocket core processes custom Rocket Custom Coprocessor
(RoCC) instructions and passes requests to the accelerator. In this lab, you will not instantiate a full
Rocket core, but instead wrap your accelerator in an emulated RoCC interface. Your accelerator
will be responsible for handling three distinct coprocesor instructions: SETUP, ROWSUM, and
COLSUM.

RoCC Instructions

In general, 32-bit RoCC instructions extend the RISC-V ISA and are formatted as shown in Fig-
ure 2.

Figure 2: The RoCC instruction encoding.

The xs1, xs2, and xd bits control how the base integer registers are read and written by the
coprocessor instruction.

If xs1 is a 1, then the 64-bit value in the integer register specified by rs1 is passed to the coprocessor.
If the xs1 bit is clear, no value is passed over the RoCC interface. The xs2 bit similarly controls
whether a second integer register specified by rs2 is read and passed to the RoCC interface.

If the xd bit is a 1 and rd is not x0, the core will wait for a value to be returned by the coprocessor
over the RoCC interface after issuing the instruction to the coprocessor. The value is then written
to the integer register specifed by rd. If the xd is 0 or rd is x0, the core will not wait for a value
from the coprocessor.

In all cases, bits 31–7 of the instruction are also passed to the coprocessor for further decoding,
along with a 2-bit field indicating the major opcode (0/1/2/3). The coprocessor is responsible for
signalling illegal instructions back to the core. Note that only 2 bits of the opcode are passed to
the coprocessor, as five bits are required to define the instruction as a custom RoCC instruction.

RoCC Instructions for Matrix Sum

Your coprocessor will implement three distinct instructions: SETUP, ROWSUM, and COLSUM.

SETUP

The SETUP instruction defines the size of the (square) matrix that the accelerator will operate
on, as well as the memory location of the first element in the matrix. The SETUP instruction also
indicates that the accelerator should discard any state retained from previous matrix operations.

• opcode is set to 0 for all matrix sum instructions.

• Tighter integration in SoC form: CORE+ASIC
– RISC-V (Rocket) + Rocket Custom Coprocessor (RoCC)
– Custom 32-bit instructions

• facilitate CPU/ASIC/Memory communications

SoCs

Accelerating Front-End Bioinformatics

ASIC

inst rs1 rs2
CORE

rd data

L1 Cache

addr data tag
ASIC

data tag

CORE

ASIC

L1 Cache

ASIC

26/26S. Magierowski

CMC ‘18

The End

• Thanks for your attention
• Graduate student

acknowledgments
– Zhongpan Wu
– Karim Hammad
– Roksana Hussain
– Robinson Mittmann
– Xiaoyong Zhong
– Sumaia Atiwa
– Mahdieh Abbaszadegan
– Chengjie Wang
– Yiyun Huang

• Thanks to CMC!

Accelerating Front-End Bioinformatics

