

CMC Configure Your Research Platform

Accelerating Front-End Bioinformatics

Sebastian Magierowski

Electrical Engineering & Computer Science (EECS) York University Toronto, Canada

"Front-End" Bioinformatics

- Bioinformatics
 - computers + biological data (NIH)
- more narrowly...
 - analysis of biomolecules
 - their make-up, structure, and function
 - proteins, DNA, RNA, etc.

"Front-End"

- computations done close to the raw sample measurements
 - often with real-time preference

"Accelerating"

- Making bioinformatics find solutions faster
 - of course
- With specialized computing hardware
 - our goal is to build platforms

- Edico Genome DRAGEN bioinformatics processor
 - on Amazon EC2 F1 (Xilinx VU9P Ultrascale+)

Our Acceleration Ambitions

- Interested in custom ASICs
 - following a top-down route to get there
- GPUs
 - application-level
- FPGAs
 - kernel-level
 - RIFFA+PCIe

o oo rangel

- SoCs
 - kernel/ISA-level
 - RISC-V+RoCC

Bioinformatics "Solutions"

- sequence database homology searching

A TANDA W

For Example...Query a Protein

- <u>query</u>: ~100 character sequence (from alphabet of 20)
 - <u>target</u>: >25M recorded sequences
 - > 8G characters (amino acids)
- "Solutions" come back in seconds-minutes
 - list of sequences adhering to some matching criteria

PRED	ICTED	: probable i	nsulin-like	peptide 3 [Di	rosophila suz	ukii]		
Sequence	ce ID: X	016934436	1 Length:	130 Number of	Matches: 1			
Range 1	l: 33 to	124 GenPept	Graphics			🔻 Next Ma	tch 🛦 Previous	s Match
Score		Expect Meth	hod		Identities	Positives	Gaps	
40.0 b	its(92)	0.001 Com	positional	matrix adjust.	28/95(29%)	44/95(46%)	14/95(14%))
Query	26	VNQHLCGSHLV + LCGS L	EALYLVCG	ERGFFYTPKTRRE + + T+R	AEDLQVGQVELO	GGGPGAGS G G	LQPLA 81 L+ L	
Sbjct	33	ASMKLCGSKLI	PEALSRLCV	YGFNAMTKRT	LOPMNFNLIEA	GSLDLGFDDRSL	LERLF 89	
Query	82	LEGSLQ	KRGIVE	CCTSICSLYQLE	NYC 109			
Sbjct	90	LDGSAQMLKT	RRLREGVFD	ECCLKSCSMDELL	RYC 124			

Bioinformatics "Answers"

- Then apply biological criteria to develop insight
 - computational biology
- Examples...
 - What other proteins are closely related?
 - What genes are responsible for the protein?
 - What proteins exhibit distant relations?
 - What protein domains are shared?
- These insights may be used to arrive at scientific/clinical insight
 - Evolutionary history
 - Identify disease
 - Design drugs

A DANADA W

Common Algorithmic Patterns

- dynamic programming
 - sequence comparison
- search
 - look for sequence patterns
- sort
 - transform one string to another
- combinatorics
 - find sub-string combinations that match other strings
- graph algorithms
 - sequence assembly

- clustering
 - molecular evolution
- classification and inference
 - Bayesian networks
 - neural networks

Front-End Sequencing

- Focus on **DNA sequencing** where...
 - ...measurement has gotten very fast
 - …hardware has gotten very small
- Benefits from high-speed embedded computing
 - at least in part

DNA Sequencing...a quick reminder

- Sequencing
 - Take given DNA sample...

...and figure out its particular base sequence

G T G T G A T C C A T G C A T G G A

DNA Sequencing Pipeline

2. Fragmentation

- This translation is just one step of a process
- 1. DNA isolation

5. Basecalling

ACCTGTCGT GCAAAAATC TCAAAACGG CAAATGCGC ACGGACGGT CGCACATAA AGTGCAACC CCAATTAC CTAGATTAC CCTTGAGAA TCTAGTCTA GCCTAATGC TCTCCCGAG CTGTGTCAT TTTCCGCAC

Sorting, 8. De-duplication
 Local align, 10. Quality score

4. DNA-to-signal transduction

6. Alignment

11. Variant calling

S. Magierowski

Sequencing Trend

- Sequencer miniaturization
 - 100.0 kg
 - HiSeq" 4000 - 000.1 kg ~1000X smaller ~10-20X slower ~10% less accurate

Nanopore Sequencing

- Nanopore sequencing
 - Small hole (nanopore)
 - DNA passes through nanopore
 - Generates small current
 - Convert signal to text

4. DNA-to-signal transduction

5. Basecalling

ACCTGTCGT GCAAAAATC TCAAAACGG CAAATGCGC ACGGACGGT .CGCACATAA AGTGCAACC CCAATTTAC CTAGATTAC CCTTGAGAA TCTAGTCTA GCCTAATGC TCTCCCGAG CTGTGTCAT TTTCCGCAC

Nanopore Front-End Signals

[©Oxford Nanopore Tech]

Nanopores + CMOS

- Not just nanopores
- A successful blend of...
 - *nano*tech
 - sensors
 - *micro*tech
 - mixed-signal CMOS •
 - microfluidics •

[COxford Nanopore Tech]

AMÊ

SIND

ADC

Computational Burden

~500 DNA bases/sec./channel

~1000 DNA bases/sec./core

- ~500 channels (1 cm²)
- $-500 \times 500 = 250,000$ bases/sec.
 - 1 human genome / 3.5 hours

- 250,000/1000 = 250 cores needed
 - ~25 W / core
- ~25 × 250 ~ 6,000 W
 - for real-time operation

Basecalling Algorithm

GPU Basecalling: Loop Unrolling

```
for: L
 for: i
  for: j
    for: k
     load T(k)
     calc E(event(i))
     calc P(k) = T(k) \times E(event(i))
   end
   calc P(j) = \max\{P(k)\}
  end
  calc max{P(j)}
 end
end
```


GPU Basecalling: Internal Loop Unrolling

- 4096 threads
 - 128 threads per block
 - 32 blocks
- Threads assigned to
 - inner loop calculations
 - intermediate sorting
- Asynchronous convergence to local maximum

Streamline Communications

- Organizing dataflow
 - data preparation
 - data processing
 - interleave data sent to GPU
- Overall GPU gave ~6X speed-up in this case

– GTX 680

FPGA Acceleration

- For finer algorithm-to-hardware mapping
- RIFFA
 - Reusable Integration Framework for FPGA accelerators
 - from UCSD
 - open-source comms between FPGA core and CPU
 - runs over PCIe
- In the process of implementing basecalling

SA 15 NTANDA VI

RIFFA Enabled CPU-FPGA Acceleration

RIFFA Hardware/Software Interface

- In the FPGA: Hardware Interface
 - a simple handshaking protocol
 - val/rdy settings, etc.
 - core can implement a simple controller to handle it
- In the CPU: Software Interface
 - a simple data transfer API is available
 - C/C++, Python, Java, Matlab
 - fpga_send(): CPU -> FPGA
 - fpga_recv(): CPU ← FPGA
 - duplex comms possible with multithreading

Performance Potentials

- RIFFA: ~ 800 MB/s transfer bandwidth
 - PCIe 3.0 (1 lane), ~80% of peak
 - downstream (CPU-to-FPGA)
- ~ 10% of resources consumed
 - Virtex-7 (28-nm CMOS)
- Core basecaller implementation
 - 100-MHz clock, Virtex-7
 - 40% FPGA and software overhead
 - 170,000 bp/s (1 human genome per 5 hours)
 - 5 W

SoCs

- Tighter integration in SoC form: CORE+ASIC
 - RISC-V (Rocket) + Rocket Custom Coprocessor (RoCC)
 - Custom 32-bit instructions

facilitate CPU/ASIC/Memory communications

The End

- Thanks for your attention
- Graduate student
 acknowledgments
 - Zhongpan Wu
 - Karim Hammad
 - Roksana Hussain
 - Robinson Mittmann
 - Xiaoyong Zhong
 - Sumaia Atiwa
 - Mahdieh Abbaszadegan
 - Chengjie Wang
 - Yiyun Huang

Thanks to CMC!