

ANSYS HPC Seminar Series

CFD

 Prepared and presented by Alex Pickard apickard@simutechgroup.ca

Who Are We

- 120+ Employees
- 12 Local Offices
- 2000+ Customers
- 80% Engineering Staff
 with Advanced degree

Today's Adenda

- Introduction to CFD HPC, solvers, and licenses
- Computer platform recommendations (CPU models & features, RAM quantity, memory bandwidth, storage, networking)
- Hardware recommendations for users (solver and preprocessor)
- Performance diagnostic information from reading solver logs
- Simulation best practices for performance and scalability
- Sizing resource request for your model
- Intro to clusters and Job Schedulers
- Workflow recommendations based on analysis type
- Demos / Workshops
 - Job submission techniques
 - Multi-step simulation (3D Printing)
 - Improving performance and scalability of contacts

High-performance computing is the use of parallel processing techniques for solving complex computational problems.

It especially refers to using multiple computers to work together on a single problem (clusters). It does not necessarily mean working on a single solution.

What is HPC?

Having HPC capability increases throughput:

- Faster results
- More design iteration
- Hit hard deadlines
- Greater engineering efficiency
- Parametric analysis & optimization
 HPC enables more thorough design and analysis on a tighter deadline.

What is HPC?

Having HPC capability increases capability:

- More complex models
- More physics
- Less risky simplifications
- Greater detail
- System level analysis
- Discovery of new insight

HPC unlocks new capability within the ANSYS products your already have.

ANSYS CFD

- The ANSYS CFD suite consists of multiple high-end CFD codes and programs:
 - Fluent: A general CFD code considered our go-to.
 - Excellent scalability and flexibility with UDFs
 - **CFX**: Another general use code with specialization in turbomachinery
 - Slightly easier to use, greater starter
 - Icepak: A program made to do heat transfer, especially electronics
 - Built on Fluent's solver and gains thus has similar HPC characteristics
 - Others which won't be covered:
 - Forte (IC Engines), Fensap-ICE (Icing), Polyflow (Polymers+)

ANSYS Academic & HPC Licence Changes

- ANSYS HPC licencing has changed multiple times in the last 5 years.
- Overall trend is to become (slightly) simpler.
- As of 2021 Academic and Commercial licencing is identical:
 - Previously there were dedicated research licenses that provided 16 cores standard.
 - Now academic and campus licence bundles contain commercial licenses.
 - Campus bundles contain more HPC to compensate, more than makes up for the change.
 - Old 10 Research bundle had 10 x 16 core solvers + 64 HPC (no solve bigger than 80 cores)
 - New 10 Research bundle has 10 x 4 core solvers + 180 HPC (allows up to 184 cores in one solve)
- Sovlers enable 4 cores standard + HPC licence to add individual cores.
- HPC Packs are also available which have an exponential effect:
 - First pack triples the allowed cores:
 - Second pack **triples** it again:
 - Next ones is nearly **quadruple**:
 - Note: Uncommon in academia...

Packs $4 \rightarrow 12 = 3X$ $12 \rightarrow 36 = 3X$ $36 \rightarrow 132 = ~3.7X$ $132 \rightarrow 516 = ~3.9X$

Packs	Added Cores	Total Cores
1	8	12
2	32	36
3	128	128
4	512	516
5	2048	2052

Distributed Memory Mode

- Distributed solvers are standard across many ANSYS products.
- They scale and perform better than shared memory solvers.
- They enable each CPU core to have it's own solver process and work on and independent chunk of the problem
- Requires substantial coordination and communication between processes.
- Enables problems to be run across multiple computers.
- Many technologies are difficult to distribute across independent tasks (mesh changes)

CFD Scaling

- Both CFX and Fluent achieve excellent scaling to thousands of cores.
- Fluent still has greater potential is this regard:

CFX Solver Memory & CPU Requirements

- Memory usage and computation time are very feature driven.
- Help has detailed description of features that impact requirements

Chapter 15: CPU and Memory Requirements

This chapter provides information on typical increases in CPU (central processing unit) time and memory requirements incurred by some simulations and physical models:

- Tetrahedral Mesh
- <u>Executable Selection</u>
- <u>Turbulence</u>
- Energy Models
- <u>CHT Regions</u>
- <u>Multicomponent Flows</u>
- <u>Multiphase Flows</u>
- Additional Variables, Wall Distance Variables, and Boundary Distance Variables
- <u>Combustion Modeling</u>
- <u>Radiation Modeling</u>
- <u>GGI Interfaces</u>
- <u>Transient Runs</u>
 Mesh Deformation
- Bidirectional (Two-Way) Couplings with System Coupling
- Tets require 0.4x memory per element, or 2x per node, vs. Hex Mesh.
 - (Tets 5:1 with nodes, Hex 1:1)
- Double precision for large changes in grid dimension, aspect ratio, pressure range, multi-phase, etc.

CFX Solver Memory & CPU Requirements

- Large problem solver for 2^31 words of 4-bytes (~80M Hex or ~200M Tet).
- Hex meshes are better for multiphase, lower scaling penalty.

# of	Memory Increases				
Phases	(Hex Mesh)	(Tet Mesh)			
1	1	1.80			
2	2.15	3.40			
3	3.50	5.70			
4	5.15	8.05			
5	7.00	10.60			

- Mesh deformation has expensive computations <u>once</u> per timestep, plus extra RAM.
- Energy equations add 33% CPU to momentum and mass equations.
- Many other options (turbulence models, walls, combustion) require mostly CPU not much RAM.

CPU Instructions: AVX

- Many other ANSYS solvers, particularly direct matrix solves in Mechanical and EDT, use AVX instructions to solve their matrix.
- CFD solvers seems to have no or minimal AVX requirements.
- In a few years back an AVX2 binary of fluent was shipped that could allow minor gains (~5%), it seems to have disappeared.
- Performance is driven by core speed and data access bandwidth.

	Microarchitecture	Instruction Set	SP FLOPs / cycle	DP FLOPs / cycle
2017	Skylake	Intel® AVX-512 & FMA	64	32
2014	Haswell / Broadwell	Intel AVX2 & FMA	32	16
2012	Sandybridge	Intel AVX (256b)	16	8
2010	Nehalem	SSE (128b)	8	4

Memory Bandwidth

- Simulation software tends to do simple math on large pools of data.
- Data needs to fetched quickly, processed, and then the results stored quickly.
- The ability to fetch and store data is limited by the memory bandwidth and data cache on a system, which is inherent to the platform and CPU.
- Comparison of current server CPU models available:

Model	Intel Xeon Scalable (per socket)	AMD EPYC (per socket)
Memory Channels	6 x DDR4-2933 MHz	8 x DDR4-3200 MHz
L3 Data Cache	Up to 38.5 MB	Up to 256 MB
Cores	Up to 28	Up to 64

• As core count gets higher the bandwidth advantages exceed the core efficiency

Memory Bandwidth

- Be sure to populate all memory channels (not necessarily all slots)
- Aim between between 2-4 Cores / memory channel
- <u>https://simutechgroup.com/maximizing-memory-performance-for-ansys-simulations/</u>

Which CPU Then?

- AMD seems to come out ahead at every core count (but not price point).
- AMD CPUs have massive data cache advantage currently.
- Intel HEDT CPUs (quad memory channel) are cheaper than TR (no Ryzen 5000 data yet)
- Focus on frequency for preprocessing (meshing speed!)
- Either for laptops, focus on platform, power

Cores / Node	AMD	Intel
4-8	Ryzen 5800X	i9-10900k
12-16	Ryzen 5950X Threadripper 3960X	i9-10920X / i9-10980XE Xeon W Xeon Gold
24+	Threadripper Pro 1-2 AMD EPYC	Dual Xeon Gold (like 6242R)

Dual EPYC 7502 vs Dual Xeon 6242R 64 cores vs 40 cores

Dual EPYC 7502 vs Dual Xeon 6242R 36 cores vs 36 cores

Regarding RAM Sizing

- Giving a memory quantity recommendation is difficult because CFD models vary wildly in size, in particular transient vs. steady state.
- Extra RAM beyond what is needed to solve in RAM is not helpful.
- There really is no "page to disk" option, we need to have enough for our problem or compromise.
- We need maximum memory bandwidth (and speed!) from our platform, which frequently drives minimum quantity.
- Largely comes down to economics and appetite, RAM is fairly cheap (64GB+ ?).
- We use a cluster to scale our RAM and cores:
 - Need more RAM: request more nodes.
- SSD performance isn't critical for solver, but does drive experience and postprocessing.

GPUs

- Dedicated GPU is strongly recommended for GUI usage. (Quadro / Firepro)
- GPU's for compute are not really recommended
 - Very expensive
 - Inconsistent benefit
 - Less benefit as more cores are available
 - Main use case: reduce licencing costs (they only count as 1 core)

Networking

- Networking nodes together in CFD work extremely well.
- Each node adds more cache, memory bandwidth, memory quantity, cores, etc.
- Regular 1gbps Ethernet can be used for small clusters of small machines (workstations, laptops)
- High speed interconnect is required for larger clusters.
- RDMA communication is effectively required to see maximum gains.
 - Traditionally infiniband was recommended, but ethernet has this too.
 - ~2 microsecond vs 30 microsecond latency, higher bandwidth, less overhead
- Linux easier to implement, but Windows 10 and Server also work.

Networking

• Old data comparing interconnects, but still relevant:

Networking

• Brand new 2021R1 data on Dual EPYC 7542 with 100 gbps Ethernet.

Cores	Oil Rig 7m SP	Oil Rig 7m DP	Combustor 12m SP	Combustor 12m DP	Aircraft Wing 14m SP	Aircraft Wing 14m DP
64	0.819	1.373	12.544	17.255	3.593	4.756
128 TCP	0.658	0.93	8.274	10.704	1.957	2.459
128 RDMA	0.51	0.674	6.563	8.477	1.794	2.314
128 vs 64 TCP mode Speedup	24%	48%	52%	61%	84%	93%
128 vs 64 RDMA mode Speedup	61%	104%	91%	104%	100%	106%

Nodes per Core and Scaling Efficiency

- Fluent data shown from tests at Argone National Labs (thousands of cores)
- Excellent efficiency at
 > 10k cells per core
- Good scaling down to 2500 cells/core

Load Balancing

• Check for even element distribution

- Unless machines have dissimilar speed...

Fluent

>	4 Ac	tive Pa	artition	5:							
	P	Cells	I-Cells	Cell	Ratio	Faces	I-Faces	Face	Ratio	Neighbors	Load
	0	3520	142		0.040	11399	195		0.017	1	1
	1	3298	115		0.035	10678	151		0.014	1	1
	2	3451	305		0.088	11404	372		0.033	2	1
	3	3583	332		0.093	11586	416		0.036	2	1
	Coll	ective	Partiti	on Sta	atistic	cs:	Minim		Maximur	n Total	
	Cell Mean	count cell c	count de	viatio	on		3298 -4.8%		3583 3.5%	13852	
	Part	ition k	oundary	cell	count		115	:	332	894	
	Part	ition k	oundary	cell	count	ratio	3.5%	1	9.3%	6.5%	
	Face	count					10678	:	11586	44500	
	Mean	face c	count de	viatio	on		-5.2%	:	2.8%		
	Part	ition k	ooundary	face	count		151		416	567	
	Part	ition k	oundary	face	count	ratio	1.4%		3.6%	1.3%	
	Part	ition r	neighbor	count	t		1	:	2		
	Part Stor	ition M ed Part	Method cition Co	ount			Metis 4				

	L						
	Elemen	its	Ver	tices		Faces	;
Part	Number	%	Number	%	%Ovlp	Number	%
Full	5362055		1305718			431798	
1	299665	5.5	82340	6.0	2.8	26341	5.9
2	336639	6.2	84940	6.2	3.0	31574	7.1
3	372613	6.8	87696	6.4	5.4	26181	5.9
4	378777	6.9	86632	6.4	5.5	18345	4.1
5	343350	6.3	87688	6.4	3.4	40596	9.2
6	310761	5.7	83422	6.1	3.3	28994	6.5
7	304609	5.6	85408	6.3	4.4	24073	5.4
8	379209	6.9	84450	6.2	5.5	19174	4.3
9	355124	6.5	86655	6.4	3.2	43423	9.8
10	317689	5.8	87163	6.4	5.9	22519	5.1
11	374125	6.8	86617	6.4	4.8	18616	4.2
12	366937	6.7	85446	6.3	6.1	26490	6.0
13	312941	5.7	84959	6.2	4.2	30573	6.9
14	367926	6.7	83759	6.1	5.2	18682	4.2
15	348172	6.4	85002	6.2	2.8	32840	7.4
16	293859	5.4	81763	6.0	2.6	34783	7.8
Min	293859	5.4	81763	6.0	2.6	18345	4.1
(part)	 +	(16)	 	(16	16)	 +	(4)
Max	379209	6.9	87696	6.4	6.1	43423	9.8
(part)		(8)		(3	12)		(9)
Ave	341400	6.3	85246	6.2	4.3	27700	6.2
Sum	5462396	100.0	1363940	100.0		443204	100.0

Load Balancing

- Bias workload towards machines that are faster per core.
- Fluent has both manual methods and automatic methods for workload distribution.
- CFX can be balanced manually in run definition, or using CCL language.

		aage.	load(7) [load(8) [()] 2 ()] 2	
Partitioning and Load	Balancing	Flue	nt		
Metis			•		
Options	Optimization	Weighting	Dynamic Load Balancing	Zones Filter Text	BEE
 Physical Models Dynamic Mesh Mesh Adaption 	Threshold (%) 10 20 5	Interval 10 10	A V	cfb-fluid cfb-volume.3 cfb-volume.6 jet_source	
				Registers [0/0]	

> /par/part/set/load-distribution

Large Problem		🔤 Edit Custom Host	?	×		
Parallel Environment						Ξ
Submission Type	Direct S	Host Name	HPC1]	-	
Run Mode	Intel MP	Host Architecture	winnt-amd64]	-]
Host Name Custom	1 Execut	Number of Processors	16]		
HPC0		Relative Speed	2]		*
HPC1		Installation Root	Files\ANSYS Inc\v%v\CFX	6		2
		Solver Executable]		-
		ОК	Car	ncel		×

Job Schedulers & RSM

- Remote Solve Manager (RSM) is a background solving feature that allows solves to happen as a background task on your computer or <u>others on your</u> <u>network</u>.
- RSM can also integrate with the following Job Schedulers:
 - ANSYS RSM Cluster (ARC)
 - Windows and Linux, Free from ANSYS
 - PBS Pro (Linux)

Torque (Linux, very similar to PBS, just had official support dropped but still works)

- Platform LSF (Linux)
- SLURM (Linux, newly Supported)
- Univa Grid Engine (Linux)
- Windows HPC Server (Windows Server)
- Either the solvers or Workbench can be batch solved manually, allowing any scheduler.

Job Submission Techniques - RSM

- RSM is easiest way to use remote resources, not necessarily the best.
- Using RSM you can:
 - Submit Simulation System from Workbench
 - Submit whole project from Workbench

Propertie	es of Project Schematic	<u>⊸</u> † X
	A	В
1	Property	Value
2	Notes	
3	Notes	
4	Solution Process	
5	Update Option	Remote Solve Manager (Legacy) 💌
6	User String (Beta)	
7	RSM Queue	Batch 💌
8	RSM Queue Details	
9	HPC Configuration	Cluster
10	HPC Queue	batch
11	HPC Type	Custom
12	Job Name	Workbench
13	Project Update	
14	Pre-RSM Foreground Update	None
15	Component Execution Mode	Parallel 💌
16	Number of Processes	32
17	Retain Failed Design Points (Beta)	

Workbench Job Submission via RSM

- Submitting whole workbench project has significant benefit for interdependent systems.
- Normally System A work be solved, the results retrieved, System B would map those results, then be submitted, solved, and retrieved.
 - Lots of file transfer and user input required.
- Workbench project update allows a single submission that updates the whole project.
 - CFD + Structural, optimization, parametric models

Direct Batch Solve

• Fluent:

fluent 3d -mpi=intel -t {cores} -g -cnf={hostfile} -i file.journal > solve.log 3d, 3ddp, 2d etc.

- -mpi MPI selection (intel, ibm, Microsoft, intel2019)
- -t Threads (cores)
- -cnf List of hosts
- -i Input Journal File
- -g No Graphics

> solve.log redirect output to log file for saving

Direct Batch Solve

• **CFX** (CFD):

cfx5solve -batch -def "%INPUT_DEF%" -par-dist \$(cat hostfile | tr '\n' ',') -start-method
"Intel MPI Distributed Parallel"

-batch	batch Mode
-def	Job Definition File
-par-dist	Hosts (parallel distributed, see others)
-start-method	(MPI and local vs distributed)
-double	Double Precision
-size {x}	Multiplier for memory allocation from estimates
-large	Large Problem Solver
<pre>-ccl {file.ccl}</pre>	Command Language File for many advanced features

- All solvers have many optional arguments that should be checked and used, this is only a quick reference to start.
 - See ANSYS Help

Batch Workbench Job

- If you don't have RSM, you can still submit a whole workbench project as a single job.
 - Archive the project into a wbpz file (optional).
 - Move that file onto cluster
 - Extract using workbench (or just unzip it, wbpz is just a gzip file):

/ansys_inc/v202/Framework/bin/Linux64/runwb2 -B -E 'Unarchive(ArchivePath=r"CFD.wbpz",
ProjectPath=r"CFD.wbpj", Overwrite = True)'

• Update the whole project:

/ansys_inc/v202/Framework/bin/Linux64/runwb2 -B -E 'Update(); Save(Overwrite=True)' -F "CFD.wbpj"

• Learning Workbench scripting language is not covered here, but the "recording" feature is highly recommended.

-A addinsfile: Use addins file 'addins' -B : Run in batch -C configfile: Use configuration 'config'	ImportArchive			6 🕼 Solution 7 🔗 Results
-D dataFile : Import an application data file. -E statement : Execute a journal statement at startup. May be repeated.	Ansys Minerva	•	- Contact	Split Contact
-F WBProject : Open a Workbench project file (*.wbpj) -I : Run interactively	Scripting	•	Record Journal	
-L language : Show UI in 'language' -R replayfile: Use replay file 'replay'	Export Report		Run Script File	
-W workspace : Start UI with specified workspace	1 C:\\HPC Semi	inars\Contact Splitting\Contact Splitting.wbpj	Open Command Wind	low

Interactive Cluster Jobs

- Many job schedulers allow interactive job sessions, including X forwarding (graphics).
- For PBS:

qsub -I -X -N Jobname -l select=16

 Then just open Workbench or CFD solver and use the GUI: /ansys_inc/v202/Framework/bin/Linux64/runwb2 /ansys_inc/v202/fluent/bin/fluent
 Absolution

Other Solver Methods

- Fluent has hybrid Window GUI with Linux Solver mode (See Demo)
 - So does Icepak
- CFX has full job monitor for observing and editing batch jobs (see Demo)
- Fluent has solver "as a service" mode with remote console (not covered):
- Fluent has direct job scheduler integration with: -scheduler=pbs {pbs, lsf, sge}
 Relatively new since 2019 R2

Reading "\" gunzip	-c \\"airfoil-4.cas.gz\\"\""	
9800 quadrilater	al cells, zone 16, binary.	
19325 2D interior	faces, zone 15, binary.	
100 2D Wall Fac	es, zone 3, binary.	
100 2D Wall Fac	es, zone 14, binary.	
10075 and a bina	-far-field faces, zone 11, binary.	
10075 nodes, binds	biname	
10075 Houe Flags,	binary.	
Building		
mesh		
materials,		
interface,		
domains,		
mixture		
zones,		
interior-1		
wall-top		
pressure-far-fie	ld-1	
wall-bottom		
fluid-16		
Done.		

Restarts and Initialization

- CFD solves can be quite long, but are easy to restart.
- Don't forget to autosave incase of a crash
- Reload initial conditions from a previous solve to better initialize flow.
- Save mesh and partitioning setup for subsequent solves.

stics t=0 Initialize	Activities Autosave + Create - Manage	✓ Input Summa ✓ Check Case Preview Mesh Methods			
Autosave Save Data File Eve	ery 20000	× ne Steps 💌			
Data File Quantities					
Save Associate	d Case Files				
Only if Modified					
O Each Time					
File Storage Options					
🗌 🗌 Retain Only t	the Most Recent File	s			
Maximum Number of Data Files 0					
Only Associated Case Files are Retained					
File Name					
cfb-fine.gz		Browse			
Append File Name with flow-time 💌					
Decimal Places in File Name 6					
OK Cancel Help					

Measuring Performance

• Fluent has performance statistics option or /par/timer/usage command:

- You only need a few iterations to get a result you can extrapolate usually:
- Focus on solver time not total time:

CFD Solver wall clock seconds: 5.1197E+01 vs. Total wall clock time: 6.299E+01 seconds

> /par/timer/usage

erformance Timer for 25 iterations on 36 compute	nodes	
Average wall-clock time per iteration:	24.358	sec
Global reductions per iteration:	2074	ops
Global reductions time per iteration:	0.000	sec (0.0%)
Message count per iteration:	1050698	messages
Data transfer per iteration:	898.971	MB
LE solves per iteration:	8	solves
LE wall-clock time per iteration:	16.900	sec (69.4%)
LE global solves per iteration:	9	solves
LE global wall-clock time per iteration:	0.007	sec (0.0%)
LE global matrix maximum size:	1067	
AMG cycles per iteration:	55.440	cycles
Relaxation sweeps per iteration:	4459	sweeps
Relaxation exchanges per iteration:	0	exchanges
LE early protections (stall) per iteration:	0.0	00 times
LE early protections (divergence) per iteration:	. 0.00	00 times

Total wall-clock time:

608.950 sec

Demonstrations

- Launch programs over SSH with PBS
- Fluent hybrid mode
- Monitor job in progress

Thanks for listening!

Apickard@simutechgroup.ca

www.SimuTechGroup.com/Offices