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Presentation Summary

= Motivation — What problem are we trying to solve?

Background — What are Physical Unclonable Functions?

Authentication with Strong PUFs
PUF on PUF — Reliable, ML Resistant PUF

Motivation — What problem we are trying to solve?

= How to identify and authenticate billions of devices?

= Traditional solution: secret IDs programmed during the test
= Vulnerable to tampering attacks (implementation dependent)

= “Merely calling a bit string a “secret key” does not make it secret, but rather identifies it as an
interesting target for the adversary” [1]

= Programmed secrets don't prevent counterfeiting

= $75 billion dollar fake semiconductor market [2]

[1] Ron Rivest, “lllegitimi non carborundum®. Invited keynote talk, CRYPTO 2011
[2] https://www.designnews.com/cyber-security/dangers-counterfeit-semi-chips, accessed on 1 Dec 2020




PUFs offer low-cost entity for secret key generation or authentication

PUFs create a unique device “fingerprint” from inherent device process variation
= Manufacturing another identical PUF is unlikely

= PUFs use a challenge-response protocol

Weak PUFs have limited number of challenges-response pair (CRP)

= Require extra hardware for error correction and encryption

Strong PUFs have large number of challenges

= Exhaustive enumeration of challenge-response pairs (CRPs) is impractical
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= Two signals race throughout identical delay paths
= Response depends on which signal arrived first at the arbiter

= Delay variability and input challenge define the response
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640 CRPs is enough to model a 64-bit
Arbiter PUF with 95% accuracy
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= Additional arbiters use accumulated delay to select MUXes
= XOR combines responses of multiple Arbiter PUFs

= Additional arbiters improve learning resistance at the cost of lower reliability
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= Compositions use multiple PUF instances to act as a single strong PUF [1]

= First layer responses are used as challenge input to following layer(s)

= Instance-specific challenge transformation

> Response

[1] Z Wu, Hiren D Patel, Manoj Sachdev, and Mahesh V Tripunitara, “Strengthening PUFs using Composition,” ICCAD, pages 1 — 8, 2019.

Circuit Level Implementation - Enhancing Arbiter Reliahility

= We use tristate inverters as delay cells

= Arbiter has NAND gates in positive feedback
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outputs 2 enhanced reliability

Node X \

Simulation 1.0V@25C — \

: >
S L

Smuaion 10vazse ()

Arbiter Node Y [V]
oy
&

Node Y

In

MUX Path Arbiter




Low-Voltage Reliable PUF Operation

= At low-voltage, MOS current has increased sensitivity
to process variations* - increased delay difference!

= Designed a 65 nm testchip to test this hypothesis

» Measured delay differences using dedicated outputs
to I0 PADs and an oscilloscope (no arbiter)**

= Lower voltages yield wider delay difference
distributions

Impact of noise is seen at 0.2V when the same set of
challenges is measured a second time

*B Zhai, et al. Analysis and mitigation of variability in subthreshold design. In Int Symposium on Low Power Electronics and
Design, 20-25, 2005,

**Stangherlin and Sachdev, “Reliable Strong PUF Enroliment and Operation with Temperature and Voltage Optimization
International Symposium on Quality Electronic Design, March 2021
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Delay Differenc: Arbiter Input

Low-Voltage Reliable PUF Operation

= At low-voltage, MOS current has increased sensitivity
to process variations* - increased delay difference!

= Designed a 65 nm testchip to test this hypothesis

= Measured delay differences using dedicated outputs
to IO PADs and an oscilloscope (no arbiter)**

= Lower voltages yield wider delay difference
distributions

Impact of noise is seen at 0.2V when the same set of
challenges is measured a second time

*B Zhai, et al. Analysis and mitigation of variability in subthreshold design. In Int Symposium on Low Power Electronics and
Design, 20-25, 2005.

**Stangherlin and Sachdev, “Reliable Strong PUF Enroliment and Operation with
International Symposium on Quality Electronic Design, March 2021

Temperature and Voltage Optimization
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Measurement Results

Measurements on 5,000 challenges repeated 1000 times each

= Modest increase in reliability with reduced voltage 60
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Multiple instances of Arbiter PUFs to achieve
higher learning resistance
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First layer PUFs can have multiple evaluation
rounds

= More layers for the same Silicon area PUF, PJFB P:Fn
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Temporal Majority Voting (TMV) is used to
enhance reliability
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Number of stages in first layer PUFs

= Uniformity for single round is presents
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= Evolutionary strategies using 64-bit PUFs

LG = Other architectures
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Learning Resistance of Gomposite PUFs

= Learning resistance in Composite PUFs require larger than minimal PUFs in the
15t layer

= For the 24-bit PUFs in first layer, model accuracy decreases as the number of
rounds increase

Model Accuracy using Deep Neural Networks:

Bits 1st Stage 1Round 2 Rounds 3 Rounds 4 Rounds

2-bits 81% 91% 93% 96%

24-bits 66% 60% 59% 55%
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