Running 2-bit quantized CNN models on ARM CPUs

Davis Sawyer Co-founder & CPO

May 4, 2023

2

 \bigcap

Deeplite

Optimize AI for the Edge

Founded 2019

Edge Computing Challenges

High Computational Complexity

Millions of expensive floating-point operations for each input classification are needed.

0

Memory Footprint

Huge amounts of weights and activations with limited onchip memory and bandwidth.

Power consumption

Deep learning requires significant power and can easily consume battery life

In-memory / near memory Computation

- We must bring computation at the very edge (on-chip, in-memory) Otherwise we lose a lot only on memory bottleneck
- Size is the biggest challenge in this environment

Industrial EdgeAI Challenges

- Big models/datasets 🙁
 - Expensive Training Step
- Very sensitive on accuracy drop depends on the use case
- Expecting real time execution on their edge HW 🙁
- Generic and automated approaches which work on all use cases

End-to-end Computer Vision Pipeline

Flexible platform with custom and opensource options Sophisticated and production-tested model optimization

Neutrino Model Optimization

10x improvement (more FPS, inferences/sec)

at lower cost

(less W, less MB, less \$)

Pre-trained

Model

Our Low-bit Quantization Contribution

- QAT with 1 and 2-bit precision (weights and activations) for both detection and classification models.
- Supports any precisions (1,2,3, etc.)
- Mixed precision approach to minimize the accuracy drop of quantized models.

- Custom ultra-low precision convolution operators to accelerate speed and memory throughput of quantized layers
- End-to-end framework to deploy and execute mixed precision ultra-low bit quantized models on Armv7 and Armv8 Cortex-A processors.

Issues with low bit quantization

- High accuracy loss for 2-bit quantization
- Mixed precision quantization
 - Different layers to have different bit precision to maximize accuracy
 - Sensitivity analysis
 - Minimize switching between different precision
 - trade-off between accuracy and speed
 - Automatic way with 2 bit, 8-bit and FP32 layers

Deeplite Neutrino Quantizer

Sample Applications	Architecture	Deeplite Neutrino Quantization			precision	Accuracy	Dataset
		Original Size	Optimized Size	Improvement	precision	Change	Dutuset
Image classification	ResNet18	42MB	2.9MB	x15	2w/2a	0.00% (Top1)	CIFAR100
	VGG19	76MB	5MB	x15.3	2w/2a	<1.50% (Top1)	CIFAR100
	ResNet18	42MB	2.9MB	x15	2w/1a	<1.00% (Top1)	VWW
	ResNet50	97MB	17MB	x5.6	2w/2a, 8w/8a¹	~1.50% (Top1)	ImageNet
Object Detection	VGG16_SSD	90MB	5.6MB	x16	2w/2a	<0.01 (mAP)	widerface
	VGG16_SSD	100MB	6.2MB	x16	2w/2a	<0.02 (mAP)	VOC 2012
	Yolo5_6n	7MB	0.95MB	x7	2w/2a, FP32 ¹	<0.02 (mAP)	Custom (Person Detection)

¹Mixed-Precision

DeepliteRT

- Custom ultra-low precision convolution operators to accelerate speed and memory throughput of quantized layers
- End-to-end framework to deploy and execute mixed precision ultralow bit quantized models on Armv7 and Armv8 Cortex-A processors.

Low Bit Conv2D Implementation

FP32	2 bit	Packed 32 bit	Multiplication output	Unpacked

DeepliteRT

- Uses intrinsic from the Neon vectorized instruction set for both Armv7 and Armv8 architectures to target 32-bit and 64-bit Arm CPU devices.
- Efficient tiling and parallelization schemes used to improve upon the performance of the vectorized kernels.
- On the ResNet18 model running on the low-power Arm Cortex-A53 CPU in the Raspberry Pi 3B+, our overall implementation realizes speedups of up to 2.9x on 2-bit and 4.4x on 1-bit over an optimized floating-point baseline

ResNet18 on VWW

Accuracy/performance benchmark of DeepliteRT on ResNet18 model on VWW dataset (2A/2W- weights and activations quantized to 2 bits, 1A/2W- activations quantized to 1 bit and weights quantized to 2 bits)

Industrial Use case #1

Object detection - Yolo5 based model

Detection Performance

YOLOv5s COCO – Raspberry Pi 4B (4x Cortex-A72)

Combining All Techniques

Deplice | EIW2022: Running 2 bit quantized CNN models on ARM CPUs

Conclusion

- 2-bit model running on commodity hardware is presented
- Mixed precision approach is used to minimize the accuracy loss
- Novel method is proposed to run the 2-bit model on Arm Cortex A devices
- Benchmark on classification and Object detection models are presented
- Future work
 - Extend to other hardware
 - Performance Improvement

Thank you

davis@deeplite.ai