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Energy consumption of AI in perspective

I Large language models

I 4 Wh / query × 3 queries/min
= 720 W

[A. S. Luccioni et al. Estimating the Carbon Footprint

of BLOOM, a 176B Parameter Language Model, 2022]

I Self-driving cars

I NVIDIA “Robotaxi” platform:
2× Orin SOCs + 2× Ampere GPUs
= 800 W (TDP)

I Human brain: ≈ 20 W
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Digital IC Context

Issues:

I Energy efficiency of CMOS is not improving

I Data movement consumes most of the energy

(Partial) solutions:

I Reduce data movement

I Increase on-chip memory

I Use specialized hardware

I In-memory computing
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SRAM Energy vs Reliability

all chips will meet the needed performance specification in
the worst case is effective in nominal voltage design. In
NTC design this approach results in some chips running at
1/10th their potential performance, which is wasteful both
in performance and in energy due to leakage currents.
Section VII presents a new architectural approach to dy-
namically adapting the performance of a design to the
intrinsic and environmental conditions of process, voltage,
and temperature that is capable of tracking over the wide
performance range observed in NTC operation. This
method is complemented by circuit-level techniques for
diminishing the variation of NTC circuits and for efficient
adaptation of performance.

C. Increased Functional Failure
The increased sensitivity of NTC circuits to variations

in process, temperature and voltage not only impacts
performance but also circuit functionality. In particular,
the mismatch in device strength due to local process
variations from such phenomena as random dopant fluc-
tuations (RDF) and line edge roughness (LER) can com-
promise state holding elements based on positive feedback
loops. Mismatch in the loop’s elements will cause it to
develop a natural inclination for one state over the other, a
characteristic that can lead to hard functional failure or
soft timing failure. This issue has been most pronounced in
SRAM where high yield requirements and the use of
aggressively sized devices result in prohibitive sensitivity
to local variation.

Several variation scenarios for a standard 6 T SRAM
cell are shown in Fig. 6. In (a), global process variation has
resulted in both P and N devices being weakened by a Vth

increase resulting in a potential timing failure during both
reads and writes. In (b), a similar global effect has
introduced skew between the P and N device strengths.
This is particularly detrimental when the P is skewed
stronger relative to the N resulting in a potential inability
to write data into the cell. In (c), random local mismatch is
considered and the worst case is shown for a read upset

condition. The cell is effectively skewed to favor one state
over another, and the weak pull-down on the left side
cannot properly combat the strong access device at its
drain. As such, the Data node is likely to flip to the B1[
state during normal read operations. While these examples
are shown in isolation, a fabricated circuit will certainly
experience all of them simultaneously to varying degrees
across a die and with different sensitivities to changes in
supply voltage and temperature. The resulting likelihood
of failure is potentially very high, especially as supply
voltage is reduced and feature sizes are shrunk.

For instance, a typical 65 nm SRAM cell has a failure
probability of!10"7 at nominal voltage, as shown in Fig. 7.
This low failure rate allows failing cells to be corrected for
using parity checks or even swapped using redundant
columns after fabrication. However, at an NTC voltage of
500 mV, this failure rate increases by !5 orders of magni-
tude to approximately 4%. In this case, nearly every row
and column will have at least one failing cell, and
possibly multiple failures, rendering simple redundancy
methods completely ineffective. Section V-C therefore
presents novel approaches to robustness ranging from the

Fig. 6. Effects of global and local variation on a standard 6 T SRAM cell. (a) Global Vth reduction resulting in timing failure.

(b) Global Vth P-N skew resulting in write failure. (c) Local Vth mismatch resulting in read upset.

Fig. 7. Impact of voltage scaling on SRAM failure rates.

Dreslinski et al. : Near-Threshold Computing: Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits

Vol. 98, No. 2, February 2010 | Proceedings of the IEEE 257

[R. G. Dreslinski et al., 2010]

(GF 22nm FDX)
DI MAURO et al.: ALWAYS-ON 674µW@4GOP/s ERROR RESILIENT BNNs WITH AGGRESSIVE SRAM VOLTAGE SCALING 3913

TABLE IV

SUPPLY VOLTAGE RANGE OF MEMORY ARRAY (MA), MEMORY PERIPH-
ERY (MP) AND QUENTIN POWER DOMAINS AT NOMINAL, HIGH EFFI-

CIENCY (HEFF) AND ULTRA-LOW POWER (ULP) MODES

reliability rather than for high speed, could be a severe limita-
tion for the execution of tests targeting BER measurement. In
our tests, we estimated that a single BER measurement point is
acquired in several 10th of minutes, assuming to test 448kB of
memory for 1800 iteration, at a JTAG frequency of 1MHz, and
repeating each measurement 10 times. To overcome the serial
debug interface bottleneck, we designed an on-chip BER test
application, which was executed by the microcontroller core.
This allowed to reduce the time to test a single BER point by
a factor of approximately 100X.

To issue memory transactions to the SRAM, and observe
errors on the bits, our self-test application runs directly on the
RISCY core of the SoC, which operates at the highest reliable
frequency for each condition. Pseudo-random test patterns
are generated by the core using a lightweight 32 bits Linear
Feedback Shift Register (LFSR) implemented in C code. The
test application sequentially covers the entire SRAM shared
address space. Errors are counted by comparing, bit-wise, the
data read at each memory location with the ground-truth value
generated by the LFSR generator using the same initial seed.
At each supply voltage point, the test is repeated in a loop
to have a reliable measurement of the BER. Note that this
approach could generate artifacts in the error statistics when
a memory location is filled in successive iterations with the
same test vector; to avoid this problem, and to make our
measurement more robust, the software LFSR uses a different
seed to generate test data at each new iteration.

In our tests, we measured only the BER related to SRAM
banks. SCM, which is hosted by the same power domain as
the circuit logic, was reserved for storing the core instructions
of the self-test application and test results (i.e. the number of
errors). Note that the storage of the software instruction on
an error-free memory space is mandatory for the application
to be able to run. In SoCs featuring single-power-domain
memory subsystems (i.e. not having the possibility to store
core instructions in a separate error-free memory), SRAM
errors could affect also core instructions – making aggressive
voltage scaling infeasible, as a single corrupted bit on a core
instruction could cause errors in the core control flow, making
the entire SoC entering unpredictable states, and ultimately the
system to fail. For each operating point in our experiments,
we performed 1800 on-chip test runs, writing 448kB at each
iteration.

Fig. 11 reports the BER at each SoC operating voltage.
By construction, our test could not observe more than 8 ∗
108 bits. Therefore, the reciprocal of this value represents the
lower bound of the on-chip test application, i.e. 1.25 ∗ 10−9.
The results of the BER analysis versus the supply voltage are
reported in Fig. 11. When the supply voltage is higher than
0.6 V, no BER is observable by our tests.

Fig. 11. Bit error rate.

Fig. 12. SoC maximum operating frequency.

Below a supply voltage of 0.6 V, as expected, we observed
a BER increasing with the memory supply voltage decrease,
reaching a BER of 10−2 at the lowest supply voltage point
where the memory was still accessible. The BER measure-
ments confirm that SRAM supply voltage can be scaled at the
cost of a higher number of errors, noise-tolerant applications
can be deployed on Quentin SoC and there is enough margin
for trading off the amount of noise injected on the data and
the potential energy efficiency gain deriving from the voltage
scaling.

C. Power and Energy Consumption

In this section, we discuss results related to the power and
energy consumption of the SoC. These measurements, together
with the evaluation of the maximum operating frequency,
which is reported in Fig. 12, allow evaluating the overall
energy efficiency of the system. The critical path of the system
is in the paths going from the core to the memory system.
Power measurements were performed during the execution of
a test application on the Quentin SoC. To precisely control the
supply voltages and clock frequencies of the SoC, therefore
to measure the energy consumption of individual SoC power
domains with enough accuracy, all the measurements were
performed on the Advantest SoC IC tester mentioned in V-A.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on December 10,2020 at 15:25:10 UTC from IEEE Xplore.  Restrictions apply. 

[Di Mauro et al., TCAS-I, 2020]
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Computing in Memory with Memristor Crossbars
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F. Leduc-Primeau (Polytechnique Montréal) Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs 5/22



Computing in Memory with Memristor Crossbars
Memristor crossbar :

G1,1

X1

r

G2,1

GL,1

X2

XL

Z1

r

Z2

r

Z3

r

ZM

G1,2 G1,3 G1,M

G2,2

GL,2

G2,3

GL,3

G2,M

GL,M

...
...

...
...

. . .

. . .

. . .

Zj = r
∑L

i=1 Gi,jXi

I Gi,j is the conductance value

I Xi is the input voltage

I Zj is the output voltage
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Advantages:

I High density

I Non volatile

I Operates at low voltage

I Computation within memory

Challenges:

I Writing can be slow

I Cannot have a negative
resistance

I Device-to-device and
cycle-to-cycle variations
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The conductance values are noisy

[Source: Joshi et al. Accurate deep neural network

inference using computational phase-change memory.

Nature Communications, 2020.]
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Outline

1 Context

2 Training robust models: Overview

3 Training robust models: Sharpness-aware training

4 Characterizing robustness: MemSE
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System Model

I Energy-reliability tradeoff: p(η) = e−aη

(η normalized energy, p bit flip probability)

I “Bit-masking” faults:

10 0 1 1 1 0 1 1 0 0 0 0 1 11

Sign Bit

F. Leduc-Primeau (Polytechnique Montréal) Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs 8/22



System Model

I Energy-reliability tradeoff: p(η) = e−aη

(η normalized energy, p bit flip probability)

I “Bit-masking” faults:

10 0 1 1 1 0 1 1 0 0 0 0 1 1X

bit error

Sign Bit

fault is detected on the sign bit of a value
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10 0 1 1 1 0 1 1 0 0 0 0 1 1X

bit error

Bit Masking

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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System Model

I Energy-reliability tradeoff: p(η) = e−aη

(η normalized energy, p bit flip probability)

I “Bit-masking” faults:

1 0 0 1 1 1 0 1 1 0 0 0 0 1 1X

bit error

Sign Bit

fault is detected on any other bit of a value
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System Model

I Energy-reliability tradeoff: p(η) = e−aη

(η normalized energy, p bit flip probability)

I “Bit-masking” faults:

1 0 0 1 1 1 0 1 1 0 0 0 0 1 1X

bit error

Bit Masking

11 0 0 1 1 1 0 1 1 0 0 0 0 1 1

Sign Bit

Affected bit value is replaced with the sign bit
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DNN architecture comparison (CIFAR-10)

TABLE I
NUMBER OF MEMORY ACCESSES AND ACCURACY BY ARCHITECTURE

Architecture Parameters Activations Accuracy

PreActResNet18 [27] 11.2 ⇥ 106 0.55 ⇥ 106 94.87%
MobileNetV2 [28] 2.30 ⇥ 106 1.53 ⇥ 106 93.80%

SENet18 [29] 11.3 ⇥ 106 0.86 ⇥ 106 94.77%
ResNet18 [30] 11.2 ⇥ 106 0.56 ⇥ 106 94.86%
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Fig. 1. Impact of the architecture on the robustness under BM deviations.

used to increase the robustness of networks, and not to prevent
overfitting. To find the best choice of pe to approximate the
BM model, we evaluate the performance of both models on
the test set and choose the value of pe that best predicts the
accuracy of the network under the BM model.

IV. DESIGN-SPACE EXPLORATION FOR FAULTY
IMPLEMENTATIONS

A. Choice of architecture and dataset

We perform experiments using the CIFAR10 dataset [26]
made of tiny color images of 32⇥32 pixels. We first com-
pare four architectures, namely PreActResNet18 [27], Mo-
bileNetV2 [28], SENet18 [29] and ResNet18 [30], which
are all modern architectures achieving good accuracy on
CIFAR10. Table I shows for each architecture the number
of weights (parameters) and activation values of neurons that
must be retrieved from memory for processing one input, and
the accuracy achieved by that architecture.

In Fig. 1, we compare the robustness of the above-
mentioned architectures when the parameters and activations
are affected by the BM deviation model. We observe that some
architectures are inherently more robust than others, and that
this does not depend solely on the global number of parame-
ters. In Fig. 2, we plot the accuracy in terms of the energy ⌘Eo

per inference, where the base energy Eo corresponds to the
sum of the parameter and activation columns of Table I, and
the fault probability is obtained from the normalized energy
⌘ using (1). We observe that PreActResNet18 provides a very
interesting trade-off between accuracy, memory accesses and
robustness to BM. Therefore we choose to focus on this
architecture for the remaining experiments.
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Fig. 2. Energy consumption of different architectures under BM deviations.
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Fig. 3. Impact of memory faults on accuracy for different deviation models.

B. Comparison of the BM and erasure models

As motivated in Section III, we are interested in comparing
the effects of BM and erasures on the chosen architecture.
Results are depicted in Fig. 3. Since the BM model affects
weights and activations differently and since PreActResNet18
has about 20⇥ more weights than activation values, we focus
on matching the accuracy of the two models when only
weights are affected by deviations. We observe for this case
that the BM and erasure models have a similar effect, provided
that pe = 2p, suggesting that using erasures as a proxy to
model the deviations induced by BM is a reasonable option.
This relation will be used in Section V to train networks to
be more resilient to BM deviations.

C. Relative importance of layer depth

In a new series of experiments, we aim at identifying
the relative robustness of various parts of the architecture
under BM deviations. To this end, we introduce deviations
on only a portion of the network. Since PreActResNet18
is composed of 4 sequential blocks (made of convolutional
layers and shortcuts), we apply BM deviations to the weights
and activations of only one block at a time. Results are
depicted in Fig. 4. We observe that all parts of the network
are sensitive to deviations. Interestingly, in the region of small
accuracy degradation shown in Fig. 4, robustness increases

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 03,2020 at 13:31:09 UTC from IEEE Xplore.  Restrictions apply. 
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G. B. Hacene, et al. Training modern deep neural networks for memory-fault robustness. In IEEE
ISCAS, 2019.
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Sensitivity of each block (group of layers)
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Strategies to improve robustness (CIFAR-10)
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Sharpness-aware training
I Optimize for the loss value and the loss sharpness: “sharpness-aware

minimization (SAM)” [Foret et al. ICLR 2021]

I Minimize the loss of a worst-case perturbation ε within a neighborhood region
of radius ρ of a weight w :

LSAM(w) = min
w

max
‖ε‖2≤ρ

L(w + ε)

I Adaptive sharpness-aware minimization (ASAM) builds on SAM: [Kwon et al.

ICML 2021]

I Sharpness is scale-invariant

I Allows larger ρ

LASAM(w) = min
w

max
‖ε/|w |‖2≤ρ

L(w + ε)
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SAMSON

I SAMSON = Sharpness-aware minimization scaled by outlier normalization

I Targeting both generalization and model robustness

I No noise simulation and no knowledge of the expected noise is required.

Loss function

LSAMSON(w) = min
w

max
‖ε‖www‖p/|w |‖2≤ρ

L(w + ε),

Gonçalo Mordido, Sébastien Henwood, Sarath Chandar, François Leduc-Primeau. SAMSON:
Sharpness-Aware Minimization Scaled by Outlier Normalization for Improving DNN
Generalization and Robustness, arXiv 2211.11561, 2023.
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SAMSON Performance Results

I g`i = w `
i × Gmax
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× δi , δi ∼ N (1, σ2
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Objective of MemSE

1. Develop analytical formulas of the mean squared error (MSE) of a neural
network implemented using (noisy) memristors.

2. Hopefully they are faster to evaluate than Monte-Carlo simulations,

3. . . . and differentiable.

J. Kern, S. Henwood, G. Mordido, E. Dupraz, A. Aı̈ssa-El-Bey, Y. Savaria, and F. Leduc-Primeau.
MemSE: Fast MSE prediction for noisy memristor-based DNN accelerators. In IEEE AICAS,
2022.
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Memristor model
Noisy conductance values : Gi,j = gi,j + δq

i,j + εvi,j
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Memristor model
Noisy conductance values : Gi,j = gi,j + δq

i,j + εvi,j

I gi,j is the target conductance value
0 < gi,j < Gmax

I δq
i,j is the quantization error

Uniform quantization with a resolution of ∆ = Gmax
N

I εvi,j is the noise due to variability in conductance programming
εvi,j ∼ N (0, σ2)

For a neural network weight wi,j , the conductance value corresponds to :

gi,j = cwi,j

Scaling factor c = Gmax
Wmax
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Noisy memristor computations

Conductance can only be positive→ we split G as G = G+ −G−

For a standard DNN :
zj =

∑L
i=1 wi,jxi

With the memristor-DNN :
Zj = 1

c (
∑L

i=1 rG+
i,jXi −

∑L
i=1 rG−i,jXi)

We estimate the performance of the noisy network compared with its standard
counterpart through the MSE:

MSE[Zj ] = E[(Zj − zj)
2]

= V[Zj ] + (E[Zj ]− zj)
2 .
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Experiments on CIFAR-10
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MemSE Runtime
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Conclusion

I Crucial to develop robust DNN models to target energy efficient hardware and
be robust to attacks.

I Robustness is affected by DNN architecture and is not the same for every
layer.

I Training for robustness yields significant improvements.

I Fast analytical characterization is possible.
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