<A NVIDIA

‘

Accelerating Transformers with FP8

Griffin Lacey | 2023 May 04

Some History on Tensor Cores

» Tensor Cores are specialized hardware execution units that perform matrix multiplications
» 8X - 64x faster than scalar instructions in “CUDA Cores”
» More energy efficient

* First introduced in Volta GPU microarchitecture (2017)
- Higher densities of Tensor Cores in datacenter GPUs (Tesla)

Supported Tensor FP64, TF32, bfloat16, FP64, TF32, bfloat16, FPBe, Thac, uinalls, FP16, INT8, INT4,

Core precisions FP16, FP8, INT8 FP16, FP8, INT8 TR :%T_? Ll INT 1 il
Supported CUDA’ FP64, FP32, FP 16, FP64, FP32, FP16, FP64, FP32, FP16, FP64, FP32, FP 16, FP64, FP32, FP 16,
Core precisions bfloat16, INT8 bfloat16, INT8 bfloat16, INT8 INT8 INT8

<A NVIDIA. I

Inside FP8 Tensor Cores

— Range Precision FP8.
?) exponent mantissa matrix
eqd m23
FP32 S :
multiply
es m10
FP16 |s|—{ ||| |
accumulate into
ed m/ FP32 or FP16
BF16 S :
es5 m2
FP8 S ‘ ‘ :
(E5M2) FP32|FP16|BF16 |FP8
ed m3 matrix
FP8 S :
(E4AM3)
Allocate 1 bit to either Support for multiple accumulator
range or precision and output types

<A NVIDIA. I

Why use FP8?

Accelerate math-intensive operations
On H100 using FP8 with Tensor Cores has 60x more theoretical throughput than FP32 with CUDA cores

Accelerates memory-intensive operations and reduces storage requirements
FP8 requires 25% of the memory of FP32

Facilitates preparation for inference
Many models are deployed in low precision

NVIDIA.

Mixed Precision Recipe

Partition the DL graph into safe and unsafe ops
Safe ops benefit from reduced precision and have dynamic ranges are similar from input to output

During forward pass compute multiplications in FP16 and accumulations in FP32 for safe ops

During backward pass use loss scaling factor to avoid gradient under/overflows

ol

NVIDIA.

Mixed Precision Recipe
The FP8 Way

» Partition the DL graph into safe and unsafe ops
+ Unsafe ops don’t necessarily need to be FP32, can be FP16/BF 16

* During forward pass use E4M3 and in backward pass use E5M?2
- E4M3 dynamic range: 18 powers of 2
- E5M2 dynamic range: 32 powers of 2

Dynamic range (in powers-of-two) needed for different tensors in GEMMs.

Network Activations Weights Activation Gradients Weight Gradients
GPT 126M 10 10 17 11
Transformer-XL 8 8 11 3

ResNet50 7 5 16 9

ResNet18 R 7 14 9

» During backward pass use per-tensor scaling factors
» Pick scaling factor based on window of input
past N instances of the tensor scaling factor

FP8 output

FP8 operator

Xeuwe mau

amax history

L J
Y

current window

<ANVIDIA. I

What is Considered Safe?

Operations that are safe in FP8
Convolutions
Linear layers in Transtformer blocks
BatchNorm has been tested for specific cases (e.g. ResNet50)

Operations that should remain in higher precision
Most nonlinear functions and normalizations (GelLU, Softmay, ...)
Residual connections in LLMs
Loss functions

Context dependent - some networks or tasks may tolerate more layers in FP8

NVIDIA.

import torch
import as te
from import recipe

Set dimensions.
1n features = 768

out features = 3072
hidden size = 2043

Initialize model and inputs.
model = (1n features,

out features,
bias=True)

1np = torch.randn(hidden size,
1n features,
device="cuda")

Create FP8 recipe.

Enable autocasting to FPS8.
(enabled=True,
fp8 recipe=
out = model (1np)

loss = out.sum/()

loss.backward ()

Transformer Engine

An open-source library implementing the FP8
recipe for Transformer building blocks

Optimized for FP8 and other datatypes

Supports PyTorch, with JAX and TF support
coming soon

Composable with the native framework
operators

Supports model and sequence parallelism

NVIDIA.

Image Classification

Convolutional Networks Vision Transformers

Model 16-bits FP8 Model 16-bits FP8
ResNetl18 70.58 70.12 DeiT Tiny /2.69 /2.52
ResNet34 /3.84 /3.72 DeiT Small 80.08 79.751
ResNet50 76.65 76.61 ViT Tiny 71.61 71.24
ResNet101 77.51 77.481 ViT Small 77.19 77.24
ResNext50 77.68 77.62 ViT Base 80.27 80.20
Wide ResNet50 /8.13 /7.901 VIT Large /8.38 /8.39
InceptionV3 77.23 /7.071 Swin-V1 Tiny 81.13 81.16
Xception 79.46 79.241 Swin-V1 Small 83.02 83.07
DenseNetl121 /5.59 /5.391 Swin-V1 Base 83.50 83.42
DenseNet169 /6.97 /6.941 Swin-V2 Tiny 82.79 82.76
Dilated ResNet C-26 75.22 /5.041 Swin-V2 Small 84.30 84.12
Dilated ResNet C-42 76.80 /6.521 Swin-V2 Base 84.50 84.60
Dilated ResNet A-50 /8.16 78.121 GC-VIT Tiny 82.32 82.88
MobileNet V2 71.65 71.041 GC-VIT Small 84.03 83.98
'Experiments on dif ferent FP8 recipe GC-VIT Base 84.42 84.46
choices FAN Tiny 78.65 78.75
FAN Small 82.57 82.56
FAN Base 83.41 83.14

FP8 Formats for Deep Learning, Micikevicius et. al.

<ANVIDIA. I

https://arxiv.org/pdf/2209.05433.pdf

Network Metric 16-bits FP8

GNMT BLEU 24.83 24.651
Vaswani Base BLEL 26.87 26.831
Vaswani Large BLEU 28.43 28.351
Transformer-XL Base PPL* 22.71 22.76
Transformer-XL Large PPL* 17.90 17.85
Megatron BERT Base Loss* 1.352 1.3571
Megatron BERT Large Loss* 1.163 1.1671
JoC BERT Large F1 89.89 90.23
T5 Base F1 91.68 01.88
T5 Large F1 93.41 03.66
T5 Base Rouge 42.88 42.88
T5 Large Rouge 43.84 43.64
GPT 126M PPL* 19.36 19.50
GPT 357M PPL* 14.07 14.17
GPT 1.3B PPL* 10.77 10.78
GPT 5B PPL* 8.95 8.98

GPT 22B PPL* 7.21 7.24

GPT 175B PPL* 6.65 6.68

'Experiments on different FP8 recipe choices

*Lower means better

Perplexity

Natural Language Processing

126M BF16=== 126M FP8

OB BF16 == a= 58 FP3
175B BF16 «» «=» 1758 FP3

1.3B BF16 e=» «=» 1. 3B FP8
22B FP16 == a= 778 FP38

% of Training

Results based onrunningon A100 (16-bit Tensor
Cores) with FP8 10and on H100 FP8 Tensor Cores

<ANVIDIA. I

DL TRAININGPERFORMANCE

- LLMs
- Upto 3xfaster withH100 FP8 than ATOOBF16/FP 16
2

2.67
2.38
0

GPT 126M GPT 5B GPT 20B GPT 40B

Speedup

<A NVIDIA. I

Conclusions

What's needed for accuracy?

Transformer Engine Recipes

Per-tensor scaling
Both FP8 types (E5SM2 and E4M3)
Mixed precision

What's needed for performance?

H100 GPU
FP8 Tensor Cores for faster math

FP8 1/O to reduce bandwidth pressure

You should consider using if you:
Are training large DL models (e.g. LLMs) and want further speedup on H100
Already use 16-bit mixed-precision on Ampere and other GPUs

NVIDIA.

	Slide 1: Accelerating Transformers with FP8
	Slide 2: Some History on Tensor Cores
	Slide 3: Inside FP8 Tensor Cores
	Slide 4: Why use FP8?
	Slide 5: Mixed Precision Recipe
	Slide 6: Mixed Precision Recipe
	Slide 7: What is Considered Safe?
	Slide 8: Transformer Engine
	Slide 9: Image Classification
	Slide 10: Natural Language Processing
	Slide 11: DL TRAINING PERFORMANCE
	Slide 12: Conclusions
	Slide 13

