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Some History on Tensor Cores

• Tensor Cores are specialized hardware execution units that perform matrix multiplications

• 8x - 64x faster than scalar instructions in “CUDA Cores”

• More energy efficient

• First introduced in Volta GPU microarchitecture (2017) 

• Higher densities of Tensor Cores in datacenter GPUs (Tesla)



Inside FP8 Tensor Cores
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Why use FP8?

• Accelerate math-intensive operations

• On H100 using FP8 with Tensor Cores has 60x more theoretical throughput than FP32 with CUDA cores

• Accelerates memory-intensive operations and reduces storage requirements 

• FP8 requires 25% of the memory of FP32

• Facilitates preparation for inference

• Many models are deployed in low precision



Mixed Precision Recipe
The FP16 Way

• Partition the DL graph into safe and unsafe ops

• Safe ops benefit from reduced precision and have dynamic ranges are similar from input to output

• During forward pass compute multiplications in FP16 and accumulations in FP32 for safe ops

• During backward pass use loss scaling factor to avoid gradient under/overflows



Mixed Precision Recipe
The FP8 Way

• Partition the DL graph into safe and unsafe ops

• Unsafe ops don’t necessarily need to be FP32, can be FP16/BF16

• During forward pass use E4M3 and in backward pass use E5M2

• E4M3 dynamic range: 18 powers of 2

• E5M2 dynamic range: 32 powers of 2

• During backward pass use per-tensor scaling factors

• Pick scaling factor based on window of

past N instances of the tensor



What is Considered Safe?

• Operations that are safe in FP8

• Convolutions

• Linear layers in Transformer blocks

• BatchNorm has been tested for specific cases (e.g. ResNet50)

• Operations that should remain in higher precision

• Most nonlinear functions and normalizations (GeLU, Softmax, ...)

• Residual connections in LLMs

• Loss functions

• Context dependent – some networks or tasks may tolerate more layers in FP8



Transformer Engine

• An open-source library implementing the FP8
recipe for Transformer building blocks

• Optimized for FP8 and other datatypes

• Supports PyTorch, with JA X and TF support
coming soon

• Composable with the native framework

operators

• Supports model and sequence parallelism

• https://github.com/NVIDIA/TransformerEngine

Transformer Engine

import torch

import transformer_engine.pytorch as te

from transformer_engine.common import recipe

# Set dimensions. 

in_features = 768

out_features = 3072

hidden_size = 2048

# Initialize model and inputs. 

model = te.Linear(in_features,

out_features, 

bias=True)

inp = torch.randn(hidden_size,

in_features, 

device="cuda")

# Create FP8 recipe.

fp8_recipe = recipe.DelayedScaling()

# Enable autocasting to FP8.

with te.fp8_autocast(enabled=True,

fp8_recipe=fp8_recipe):

out = model(inp)

loss = out.sum() 

loss.backward()



Model 16-bits FP8

ResNet18 70.58 70.12

ResNet34 73.84 73.72

ResNet50 76.65 76.61

ResNet101 77.51 77.48¹

ResNext50 77.68 77.62

Wide ResNet50 78.13 77.90¹

InceptionV3 77.23 77.07¹

Xception 79.46 79.24¹

DenseNet121 75.59 75.39¹

DenseNet169 76.97 76.94¹

Dilated ResNet C-26 75.22 75.04¹

Dilated ResNet C-42 76.80 76.52¹

Dilated ResNet A-50 78.16 78.12¹

MobileNet V2 71.65 71.04¹

FP8 Formats for Deep Learning, Micikevicius et. al.

Convolutional Networks

Image Classification

Model 16-bits FP8

DeiT Tiny 72.69 72.52

DeiT Small 80.08 79.75¹

ViT Tiny 71.61 71.24

ViT Small 77.19 77.24

ViT Base 80.27 80.20

ViT Large 78.38 78.39

Swin-V1 Tiny 81.13 81.16

Swin-V1 Small 83.02 83.07

Swin-V1 Base 83.50 83.42

Swin-V2 Tiny 82.79 82.76

Swin-V2 Small 84.30 84.12

Swin-V2 Base 84.50 84.60

GC-ViT Tiny 82.32 82.88

GC-ViT Small 84.03 83.98

GC-ViT Base 84.42 84.46

FAN Tiny 78.65 78.75

FAN Small 82.57 82.56

FAN Base 83.41 83.14

Vision Transformers

¹Experiments on different FP8 recipe

choices

https://arxiv.org/pdf/2209.05433.pdf


Natural Language Processing

Results based on running on A100 (16-bit Tensor 

Cores) with FP8 IO and on H100 FP8 Tensor Cores

Network Metric 16-bits FP8

GNMT BLEU 24.83 24.65¹

Vaswani Base BLEU 26.87 26.83¹

Vaswani Large BLEU 28.43 28.35¹

Transformer-XL Base PPL* 22.71 22.76

Transformer-XL Large PPL* 17.90 17.85

Megatron BERT Base Loss* 1.352 1.357¹

Megatron BERT Large Loss* 1.163 1.167¹

JoC BERT Large F1 89.89 90.23

T5 Base F1 91.68 91.88

T5 Large F1 93.41 93.66

T5 Base Rouge 42.88 42.88

T5 Large Rouge 43.84 43.64

GPT 126M PPL* 19.36 19.50

GPT 357M PPL* 14.07 14.17

GPT 1.3B PPL* 10.77 10.78

GPT 5B PPL* 8.95 8.98

GPT 22B PPL* 7.21 7.24

GPT 175B PPL* 6.65 6.68

¹Experiments on different FP8 recipe choices

*Lower means better



• LLMs

• Up to 3x faster with H100 FP8 than A100 BF16/FP16

DL TRAINING PERFORMANCE



Conclusions

• What’s needed for accuracy?

• Transformer Engine Recipes 

• Per-tensor scaling 

• Both FP8 types (E5M2 and E4M3)

• Mixed precision

• What’s needed for performance?

• H100 GPU

• FP8 Tensor Cores for faster math

• FP8 I/O to reduce bandwidth pressure

• You should consider using if you:

• Are training large DL models (e.g. LLMs) and want further speedup on H100

• Already use 16-bit mixed-precision on Ampere and other GPUs
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