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CVA6 processor (Ariane)
• Ariane is the codename for the 

risc V processor using RV64 
instruction set.

• CVA6 is a 6 stage in order, 
single issue wide processor 
with support to M,A and C 
extension.

• https://github.com/openhwgr
oup/cva6
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Ara

• Ara (CV-VEC) is the codename for the vector 
processor.

• Vectors and array processor can use SIMD 
programming model to improve computation 
throughput.

• Example of Array processors is x86 that 
supports AVX instructions, or ARM with neon.

• The vector in an array processor are fixed in 
size ,  as opposed to in vector processors 
which can use dynamic length up to 4096-bit 
operations. 

• Ara can be configured with different numbers 
of lanes allowing more parallelism based on 
how wide the design is.
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What is Polara ?
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• Polara is aiming to create a multi-
core version of the ARA vectorial 
processor using the OpenPiton
framework

• The ASIC will posses 4 instances or 
ARA/CVVEC with 4 lanes each



SIMD recap

• SIMD allows multiple operation with a 
single instruction.

• This type of parallelism is called data-
level parallelism (DLP).

• DLP allows for better hardware 
utilization

• Vector processor and array processor 
are both different implementation of 
SIMD computation model
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Deep learning use

• AI workload can be divided into training and inference.

• Deep learning model usually use BLAS (basic linear algebra subprograms) libraries

• BLAS are set of programming routines that are commonly used in learn algebra operations

• Neural networks commonly use AXPY
𝑦 = ∝ 𝑥 + 𝑦 

where x and y are vectors

• MATMUL is a second level BLAS and defined as
𝐶 ≔ 𝐴𝐵 + 𝐶

where C, A, and B are matrices
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Research Objective

1. Extending Ara to support low precision instruction and sub-byte computations. 
This would help with low precision Quantized neural networks and Binary 
neural networks

2. Build an FPGA model of the chip for verification
3. Build a custom chip from Ara + Ariane + extension design on 

GLOBALFOUNDERIES 22FDX 22 nm technology with the help of CMC
4. Build software stack and runtime to run on neural networks on the fabricated 

chip
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SUB-BYTE COMPUTATIONS METHODS

BIT-SERIAL [1] ULPPACK [2]

[1] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, ‘Automatic generation of high-performance quantized machine 
learning kernels’, 02 2020, pp. 305–316.

[2] J. Won, J. Si, S. Son, T. J. Ham, and J. W. Lee, ‘ULPPACK: Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware’, 
in Proceedings of Machine Learning and Systems, 2022, vol. 4, pp. 52–63.

Introduces software/hardware techniques to compute sub-byte dot product more efficiently

2 weights, 2 activations, 2-bit precision

Dot product results
on high 4-bit

Can be fused in 
just a LSR (Logical

Shift Righ)
Dot product

between vectors
w and a

Wider register can be used according to desired
#operands / precision

𝑤 ⋅  𝑎 = 2 𝑝𝑜𝑝𝑐𝑛𝑡(𝑤 & 𝑎 )

Where 𝑁, 𝑀 are respectively activation 
precision and weight precision 

At minimum, requires the implementation 
(SW or HW) of 𝑝𝑜𝑝𝑐𝑛𝑡 instruction (non-
existing in RISC-V « V » ISA)

Vectorizes the computation using scalar instructionsComputation done between corresponding bits of operands
in a serial manner



BIT-SERIAL [1] ULPPACK [2]

[1] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, ‘Automatic generation of high-performance quantized machine learning kernels’, 
02 2020, pp. 305–316.

[2] J. Won, J. Si, S. Son, T. J. Ham, and J. W. Lee, ‘ULPPACK: Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware’, in Proceedings of 
Machine Learning and Systems, 2022, vol. 4, pp. 52–63.

Introduces software/hardware techniques to compute sub-byte dot product more efficiently

Bit-serial complexity is 𝑂 𝑁 × 𝑀
Suitable for very small precision
(typ. 1-bit to 2-bit)

Requires modification on the HW

More versatile (up to 4-bit precision)
Efficient in SW on small precision (no HW added)

Exemple from [2] comparing both methods
Bit-serial performance decreases rapidely
whereas ULPPACK yields great
performance from W2A2 to W4A4

Vectorizes the computation using scalar instructionsComputation done between corresponding bits of operands
in a serial manner

SUB-BYTE COMPUTATIONS METHODS



RISC-V VECTOR PROCESSOR: 
PARALLELIZATION OF COMPUTATIONS 

4 lane ara micro-architecture
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Work in Progress

𝑆 = 0.154𝑚𝑚 𝑆 = 0.067𝑚𝑚 𝑆 = 0.103𝑚𝑚 𝑆 = 0.154𝑚𝑚

Bit-serial dedicated
Hardware

(No FPU, MUL/DIV)
Vanilla RISC-V « V »

ULPPACK dedicated
Hardware
(No FPU)

ULPPACK dedicated
Hardware (barrel-shifter)

(No FPU)

Sparq v2Sparq [4]Quark [3]Ara

Area of 
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Specifications

SEVERAL ARCHITECTURES AIMING TOWARDS SUB-BYTE 
COMPUTATIONS

[1] M. AskariHemmat, T. Dupuis, Y. Fournier, N. E. Zarif, M. Cavalcante, M. Perotti, F. Gurkaynak, L. Benini, F. Leduc-Primeau, Y. Savaria, and J.-P. David, “Quark: An integer risc-v vector processor for sub-byte 
quantized dnn inference,” 2023. [Online]. Available: https://arxiv.org/abs/2302.05996

[2] T. Dupuis, Y. Fournier, M. AskariHemmat, N. E. Zarif, F. Leduc-Primeau, J. P. David, and Y. Savaria, “Sparq: A custom risc-v vector processor for efficient sub-byte quantized inference,” 2023, Unpublished.



SEVERAL ARCHITECTURES AIMING 
TOWARDS SUB-BYTE COMPUTATIONS

Sparq v2SparqQuarkAra
ULPPACK
(Software 

only)

ULPPACK
(HW acc.)

ULPPACK
(HW acc.)

BIT-SERIAL
(HW acc.)

Performance of 2D convolution (3x3 kernel over 64x128x128 input)

W1A1

W2A2

W3A3

Work in Progress

N/A 37.96 (×3.08)

Ara
FP32

30.80 (×2.50) 37.96 (×3.08)

48.84 (×3.96)

27.57 (×2.23)

34.40 (×2.78)

43.32 (×3.51) 51.67 (×4.19)

12.33 
operations/cycle

performance of 
W2A2 = W3A3

Results are in operations per cycle

Simulated using RTL simulation (4 lanes configuration)



CORE-V Polara Architecture
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• Polara is aiming to create a multi-
core version of the ARA vectorial 
processor using the OpenPiton
framework

• The ASIC will posses 4 instances or 
ARA/CVVEC with 4 lanes each



OpenPiton Integration

CORE-V Polara 15

• With help from UC Santa Barbara, a 
Polara tile is integrated in OpenPiton
using an AXI to NOC bridge.

• For the first stage of Integration, 
initial RISC-V vector tests are used 
for 1 tile configuration.

• Next in our plan is to run these tests 
in multi tile configuration.



FPGA Emulation - Ara
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Synthesis and implementation
completed on Xilinx Alveo U280

Configuration:
- 4 lanes
- 512kB L2 cache
- Max achievable frequency: 75MHz

Bitstream generation:
Adaptation of the board’s constraints
file to generate the bitstream



FPGA Emulation - Ara
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IO planning on Xilinx Alveo U280

64 bits for the exit signal 

UART: RX and TX

Clock and Reset

Adding the constraint file with the IOs
increased the WNS from +0.036ns to +0.238ns
at 75MHz



FPGA Emulation

• Next steps:

• Ara
- Programming the FPGA board with Ara
- Run basic tests on Ara

• OpenPiton
- Write Fusesoc script for Polara emulation: synthesis, implementation, 

generation of bitstream
- Programming the FPGA board with 1 tile of Polara’s OpenPiton
- Run tests on Polara
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ASIC design - Specifications
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• CORE-V Polara is aimed to be taped-
out this summer in GF22FDX

• We are aiming for a 3 x 3 mm die at 
a > 750 MHz clock



ASIC design – Work left to do
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• The Lanes and ARA macros are 
tape-out ready

• Currently finalising the OpenPiton
Tile macro 

• Currently starting working on the 
Top-Level macro



ASIC design - Macros
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ASIC design – Top Level
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3 
m

m

3 mm

• Starting to work on the Top Level

• Total of 4 Tiles with the chip bridge 
and the OpenPiton peripherals

• FLL integration still left to do

FLL Chip Bridge + peripherals…
Pad Ring

TILE 1

TILE 3 TILE 4

TILE 2



PnR timing results

• Timing results for the current 
macros

• Clock @ 750 MHz

• Some small violations left to fix

• Violations can be fixed using ECO 
on the critical paths



Tape-out plan
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MPW2254 :

• Application deadline : 2023-04-10

• Cancelation date : 2023-07-05

• Export Control Date : 2023-07-19

• Design Submission Deadline : 2023-07-19

• Delivery Date : 2024-01-05



AI runtime

• Usually, To run AI workload on RISC V we need to have a full OS (like 
Linux) build with support user level vector instructions.

• Or run the AI workload directly on Metal which presents it is own 
challenges.

• While CVA6 does have an MMU (memory management unit), the Ara 
vector processor doesn’t

• An MMU is necessary for address translation and virtual memory 
(and running Linux)

• Thus, running RISCV vector code in an OS environment not possible.
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AI runtime

• Solution:
• Build an AI runtime that works directly on baremetal
• Running baremetal AI not only would work without OS, but it also reduces 

memory address translation that can result in fewer memory operations, 
which reduces computation time and power

• The generic code structure that we build should support a wide array of 
microcontrollers and processors

• Challenges:
• Only the basic functionality of C is supported, which means that there is no 

support for standard C libraries, or even stuff like malloc and other dynamic 
memory units.
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Keras2c
• Keras2c has two parts:

• Code gen: takes input 
keras “.h5” network and 
convert it to C code. 
Written in python

• Library files: written in C 
contain the supported 
ML ops and different data 
structures to run 
generate C code

• Capable to run 
baremetal environment 
with little modification

• https://github.com/f0uri
est/keras2c
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Keras2c workflow

Codegen
• Write a script to load keras model and generate 2 c files and 1 h file

• The three files are a model file, input generation file and header file

Compile

• Write a makefile to compile the three generated files with the library files
• The input file the labeled test_suite which contains generated input and calls the model files
• The model files contains the weights and biases of each layer along with the functions calls to the 

library (conv2d, padding, dense, add, affine matrix, ….)

run
• Generate a binary using the makefiles, in cases of polara we need to modify linker scripts to generate 
• Run the code (we can use verilator to run the code on a simulated hardware)
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Keras2c Riscv

• The generated binary can work in verilator which is a cycle accurate 
emulator,

• It is producing the expected output which is the exact output if ran 
natively on X86 linux, or Spike RISCV elf 

29



Polara-keras2c

• rewriting some of the function of Keras2c to work for baremetal with 
custom implementation to work for baremetal (Memcpy, memset, 
strlen, strnlen, strcmp, strcpy, printf…)

• Updated code generation to remove calls incompatible with Polara 
baremetal environment

• Added support for some operations (conv2d, relu, add, dense, 
padding) for safe fixed-point implementation

• The remaining layers are still implemented in floating point
• The library files can be replaced with an optimized implementation 

(for example RISCV vector code)
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Preliminary result of inference

• 97% of cycles are spent executing 
conv2d

• Optimizing for conv2d
• Implemented RVV int8 vector to 

speedup the convolution, maxpool
and Relu

• Ara vector is close to IPC 
performance of 12th gen intel core 
using AVX instructions at much 
lower energy use (simulation)
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Future work

• Finish RTL for the sparq v2
• FPGA implementation for Polara
• Validation testing for Polara
• Fix minor timing issues with Polara
• Full stack implementation of polara-keras2c with proper scaling and 

shifting factors for low-precision neural network
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Conclusion

• Work on Multicore Ara is progressing nicely
• Chip is expected back in 2024
• High-performance and power efficiency using RISCV vector
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Thank you!


