
Accelerating AI Workshop 2023 – Challenges and
Opportunities in Cloud and Edge Computing

Polara: a RISCV multicore vector processor

Nizar El Zarif, Mohammad Hossein Askari Hemmat, Theo Dupuis,Yoan Fournier
Elisabeth Humblet, Francois Leduc-Primeau, Jean-Pierre David, Yvon Savaria

May -4 -2023

outline

• Introduction
• What are Ariane and Ara, Polara
• Why vector instructions are important for AI

• Research objectives
• Sub-byte computation methods
• Polara implementation
• Building a custom AI framework
• Conclusion

2

CVA6 processor (Ariane)
• Ariane is the codename for the

risc V processor using RV64
instruction set.

• CVA6 is a 6 stage in order,
single issue wide processor
with support to M,A and C
extension.

• https://github.com/openhwgr
oup/cva6

3

Ara

• Ara (CV-VEC) is the codename for the vector
processor.

• Vectors and array processor can use SIMD
programming model to improve computation
throughput.

• Example of Array processors is x86 that
supports AVX instructions, or ARM with neon.

• The vector in an array processor are fixed in
size , as opposed to in vector processors
which can use dynamic length up to 4096-bit
operations.

• Ara can be configured with different numbers
of lanes allowing more parallelism based on
how wide the design is.

4

What is Polara ?

L2

P-Mesh
Routers L1.5

CVA6
 +

ARA
L2

P-Mesh
RoutersL1.5

CVA6
 +

ARA

L2

P-Mesh
Routers L1.5

CVA6
 +

ARA
L2

P-Mesh
RoutersL1.5

CVA6
 +

ARA

Off-Chip NoC

JTAG
+

PLIC

Tile 1 Tile 2

Tile 3 Tile 4

CORE-V Polara 5

• Polara is aiming to create a multi-
core version of the ARA vectorial
processor using the OpenPiton
framework

• The ASIC will posses 4 instances or
ARA/CVVEC with 4 lanes each

SIMD recap

• SIMD allows multiple operation with a
single instruction.

• This type of parallelism is called data-
level parallelism (DLP).

• DLP allows for better hardware
utilization

• Vector processor and array processor
are both different implementation of
SIMD computation model

6

Deep learning use

• AI workload can be divided into training and inference.

• Deep learning model usually use BLAS (basic linear algebra subprograms) libraries

• BLAS are set of programming routines that are commonly used in learn algebra operations

• Neural networks commonly use AXPY
𝑦 = ∝ 𝑥 + 𝑦

where x and y are vectors

• MATMUL is a second level BLAS and defined as
𝐶 ≔ 𝐴𝐵 + 𝐶

where C, A, and B are matrices

7

Research Objective

1. Extending Ara to support low precision instruction and sub-byte computations.
This would help with low precision Quantized neural networks and Binary
neural networks

2. Build an FPGA model of the chip for verification
3. Build a custom chip from Ara + Ariane + extension design on

GLOBALFOUNDERIES 22FDX 22 nm technology with the help of CMC
4. Build software stack and runtime to run on neural networks on the fabricated

chip

8

SUB-BYTE COMPUTATIONS METHODS

BIT-SERIAL [1] ULPPACK [2]

[1] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, ‘Automatic generation of high-performance quantized machine
learning kernels’, 02 2020, pp. 305–316.

[2] J. Won, J. Si, S. Son, T. J. Ham, and J. W. Lee, ‘ULPPACK: Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware’,
in Proceedings of Machine Learning and Systems, 2022, vol. 4, pp. 52–63.

Introduces software/hardware techniques to compute sub-byte dot product more efficiently

2 weights, 2 activations, 2-bit precision

Dot product results
on high 4-bit

Can be fused in
just a LSR (Logical

Shift Righ)
Dot product

between vectors
w and a

Wider register can be used according to desired
#operands / precision

𝑤 ⋅ 𝑎 = 2 𝑝𝑜𝑝𝑐𝑛𝑡(𝑤 & 𝑎)

Where 𝑁, 𝑀 are respectively activation
precision and weight precision

At minimum, requires the implementation
(SW or HW) of 𝑝𝑜𝑝𝑐𝑛𝑡 instruction (non-
existing in RISC-V « V » ISA)

Vectorizes the computation using scalar instructionsComputation done between corresponding bits of operands
in a serial manner

BIT-SERIAL [1] ULPPACK [2]

[1] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, ‘Automatic generation of high-performance quantized machine learning kernels’,
02 2020, pp. 305–316.

[2] J. Won, J. Si, S. Son, T. J. Ham, and J. W. Lee, ‘ULPPACK: Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware’, in Proceedings of
Machine Learning and Systems, 2022, vol. 4, pp. 52–63.

Introduces software/hardware techniques to compute sub-byte dot product more efficiently

Bit-serial complexity is 𝑂 𝑁 × 𝑀
Suitable for very small precision
(typ. 1-bit to 2-bit)

Requires modification on the HW

More versatile (up to 4-bit precision)
Efficient in SW on small precision (no HW added)

Exemple from [2] comparing both methods
Bit-serial performance decreases rapidely
whereas ULPPACK yields great
performance from W2A2 to W4A4

Vectorizes the computation using scalar instructionsComputation done between corresponding bits of operands
in a serial manner

SUB-BYTE COMPUTATIONS METHODS

RISC-V VECTOR PROCESSOR:
PARALLELIZATION OF COMPUTATIONS

4 lane ara micro-architecture

𝐻
=

0
.3

7
0

 𝑚
𝑚

MUL / DIV

𝑤 = 0.415 𝑚𝑚 𝑤 = 0.181 𝑚𝑚 𝑤 = 0.278 𝑚𝑚 𝑤 = 0.415 𝑚𝑚

Work in Progress

𝑆 = 0.154𝑚𝑚 𝑆 = 0.067𝑚𝑚 𝑆 = 0.103𝑚𝑚 𝑆 = 0.154𝑚𝑚

Bit-serial dedicated
Hardware

(No FPU, MUL/DIV)
Vanilla RISC-V « V »

ULPPACK dedicated
Hardware
(No FPU)

ULPPACK dedicated
Hardware (barrel-shifter)

(No FPU)

Sparq v2Sparq [4]Quark [3]Ara

Area of
one lane

Specifications

SEVERAL ARCHITECTURES AIMING TOWARDS SUB-BYTE
COMPUTATIONS

[1] M. AskariHemmat, T. Dupuis, Y. Fournier, N. E. Zarif, M. Cavalcante, M. Perotti, F. Gurkaynak, L. Benini, F. Leduc-Primeau, Y. Savaria, and J.-P. David, “Quark: An integer risc-v vector processor for sub-byte
quantized dnn inference,” 2023. [Online]. Available: https://arxiv.org/abs/2302.05996

[2] T. Dupuis, Y. Fournier, M. AskariHemmat, N. E. Zarif, F. Leduc-Primeau, J. P. David, and Y. Savaria, “Sparq: A custom risc-v vector processor for efficient sub-byte quantized inference,” 2023, Unpublished.

SEVERAL ARCHITECTURES AIMING
TOWARDS SUB-BYTE COMPUTATIONS

Sparq v2SparqQuarkAra
ULPPACK
(Software

only)

ULPPACK
(HW acc.)

ULPPACK
(HW acc.)

BIT-SERIAL
(HW acc.)

Performance of 2D convolution (3x3 kernel over 64x128x128 input)

W1A1

W2A2

W3A3

Work in Progress

N/A 37.96 (×3.08)

Ara
FP32

30.80 (×2.50) 37.96 (×3.08)

48.84 (×3.96)

27.57 (×2.23)

34.40 (×2.78)

43.32 (×3.51) 51.67 (×4.19)

12.33
operations/cycle

performance of
W2A2 = W3A3

Results are in operations per cycle

Simulated using RTL simulation (4 lanes configuration)

CORE-V Polara Architecture

L2

P-Mesh
Routers L1.5

CVA6
 +

ARA
L2

P-Mesh
RoutersL1.5

CVA6
 +

ARA

L2

P-Mesh
Routers L1.5

CVA6
 +

ARA
L2

P-Mesh
RoutersL1.5

CVA6
 +

ARA

Off-Chip NoC

JTAG
+

PLIC

Tile 1 Tile 2

Tile 3 Tile 4

CORE-V Polara 14

• Polara is aiming to create a multi-
core version of the ARA vectorial
processor using the OpenPiton
framework

• The ASIC will posses 4 instances or
ARA/CVVEC with 4 lanes each

OpenPiton Integration

CORE-V Polara 15

• With help from UC Santa Barbara, a
Polara tile is integrated in OpenPiton
using an AXI to NOC bridge.

• For the first stage of Integration,
initial RISC-V vector tests are used
for 1 tile configuration.

• Next in our plan is to run these tests
in multi tile configuration.

FPGA Emulation - Ara

16

Synthesis and implementation
completed on Xilinx Alveo U280

Configuration:
- 4 lanes
- 512kB L2 cache
- Max achievable frequency: 75MHz

Bitstream generation:
Adaptation of the board’s constraints
file to generate the bitstream

FPGA Emulation - Ara

17

IO planning on Xilinx Alveo U280

64 bits for the exit signal

UART: RX and TX

Clock and Reset

Adding the constraint file with the IOs
increased the WNS from +0.036ns to +0.238ns
at 75MHz

FPGA Emulation

• Next steps:

• Ara
- Programming the FPGA board with Ara
- Run basic tests on Ara

• OpenPiton
- Write Fusesoc script for Polara emulation: synthesis, implementation,

generation of bitstream
- Programming the FPGA board with 1 tile of Polara’s OpenPiton
- Run tests on Polara

18

ASIC design - Specifications

19

• CORE-V Polara is aimed to be taped-
out this summer in GF22FDX

• We are aiming for a 3 x 3 mm die at
a > 750 MHz clock

ASIC design – Work left to do

20

• The Lanes and ARA macros are
tape-out ready

• Currently finalising the OpenPiton
Tile macro

• Currently starting working on the
Top-Level macro

ASIC design - Macros

21

CVVEC
(ARA +
CVA6)

Lane

Tile

ASIC design – Top Level

22

3
m

m

3 mm

• Starting to work on the Top Level

• Total of 4 Tiles with the chip bridge
and the OpenPiton peripherals

• FLL integration still left to do

FLL Chip Bridge + peripherals…
Pad Ring

TILE 1

TILE 3 TILE 4

TILE 2

PnR timing results

• Timing results for the current
macros

• Clock @ 750 MHz

• Some small violations left to fix

• Violations can be fixed using ECO
on the critical paths

Tape-out plan

24

MPW2254 :

• Application deadline : 2023-04-10

• Cancelation date : 2023-07-05

• Export Control Date : 2023-07-19

• Design Submission Deadline : 2023-07-19

• Delivery Date : 2024-01-05

AI runtime

• Usually, To run AI workload on RISC V we need to have a full OS (like
Linux) build with support user level vector instructions.

• Or run the AI workload directly on Metal which presents it is own
challenges.

• While CVA6 does have an MMU (memory management unit), the Ara
vector processor doesn’t

• An MMU is necessary for address translation and virtual memory
(and running Linux)

• Thus, running RISCV vector code in an OS environment not possible.

25

AI runtime

• Solution:
• Build an AI runtime that works directly on baremetal
• Running baremetal AI not only would work without OS, but it also reduces

memory address translation that can result in fewer memory operations,
which reduces computation time and power

• The generic code structure that we build should support a wide array of
microcontrollers and processors

• Challenges:
• Only the basic functionality of C is supported, which means that there is no

support for standard C libraries, or even stuff like malloc and other dynamic
memory units.

26

Keras2c
• Keras2c has two parts:

• Code gen: takes input
keras “.h5” network and
convert it to C code.
Written in python

• Library files: written in C
contain the supported
ML ops and different data
structures to run
generate C code

• Capable to run
baremetal environment
with little modification

• https://github.com/f0uri
est/keras2c

27

Keras2c workflow

Codegen
• Write a script to load keras model and generate 2 c files and 1 h file

• The three files are a model file, input generation file and header file

Compile

• Write a makefile to compile the three generated files with the library files
• The input file the labeled test_suite which contains generated input and calls the model files
• The model files contains the weights and biases of each layer along with the functions calls to the

library (conv2d, padding, dense, add, affine matrix, ….)

run
• Generate a binary using the makefiles, in cases of polara we need to modify linker scripts to generate
• Run the code (we can use verilator to run the code on a simulated hardware)

28

Keras2c Riscv

• The generated binary can work in verilator which is a cycle accurate
emulator,

• It is producing the expected output which is the exact output if ran
natively on X86 linux, or Spike RISCV elf

29

Polara-keras2c

• rewriting some of the function of Keras2c to work for baremetal with
custom implementation to work for baremetal (Memcpy, memset,
strlen, strnlen, strcmp, strcpy, printf…)

• Updated code generation to remove calls incompatible with Polara
baremetal environment

• Added support for some operations (conv2d, relu, add, dense,
padding) for safe fixed-point implementation

• The remaining layers are still implemented in floating point
• The library files can be replaced with an optimized implementation

(for example RISCV vector code)

30

Preliminary result of inference

• 97% of cycles are spent executing
conv2d

• Optimizing for conv2d
• Implemented RVV int8 vector to

speedup the convolution, maxpool
and Relu

• Ara vector is close to IPC
performance of 12th gen intel core
using AVX instructions at much
lower energy use (simulation)

31

9

1.2
0.7 0.35

0

2

4

6

8

10

ARM Intel Ara Ara int8

vector clock cycle (M)

0 0.05 0.1 0.15 0.2

Intel P core (Joules)

Intel E core (Joules)

Ara 4 lanes (estimate)

RPi4

Energy required (Joules)

Energy Scalar Energy vector

Future work

• Finish RTL for the sparq v2
• FPGA implementation for Polara
• Validation testing for Polara
• Fix minor timing issues with Polara
• Full stack implementation of polara-keras2c with proper scaling and

shifting factors for low-precision neural network

32

Conclusion

• Work on Multicore Ara is progressing nicely
• Chip is expected back in 2024
• High-performance and power efficiency using RISCV vector

33

34

Thank you!

