4% POLYTECHNIQUE @ . @
=’ MONTREAL TMC ETHzirichY s RISC

SSSSSSSSSSSS

Accelerating A1 Workshop 2023 — Challenges and
Opportunities in Cloud and Edge Computing

Polara: a RISCV multicore vector processor

Nizar El Zarif, Mohammad Hossein Askari Hemmat, Theo Dupuis, Yoan Fournier
Elisabeth Humblet, Francois Leduc-Primeau, Jean-Pierre David, Yvon Savaria

gl 0 e May _4 -2023 -

cmMC outline ETHziirich® RISC-\/*

* Introduction
* What are Ariane and Ara, Polara
* Why vector instructions are important for Al

* Research objectives

* Sub-byte computation methods
* Polara implementation

* Building a custom Al framework
* Conclusion

Y ,é:. O PEN ﬁW@

L B BB

wonteeat — CVAG processor (Ariane) Vi RISC V!

Frontend D

Issue EX Commit
* Ariane is the codename for the ™™™ | Ws P
. . Instruction Queue D ommi ‘g %
risc V processor using RV64 e 0 1
instruction set. T g — (!
1 6 H d l |‘Rge- Scoreboard i M H \,SSR
° aligner corepoar — LSU — ._s rite
QVA6 Is a stgge in order, c T -
single issue wide processor . 8. r— « -ALU T
H rite 2|, Decoder a %
with support to M,A and C ! 3 | Regtle || 2| £
extension. L\ i o A B
* https://github.com/openhwgr _ :
oup/cvab : :
SEF;(E:C‘(2 = Exception
Frontend Backend .

I OPENHW?

CORE-V°® ?

j POLYTECHNIQUE ~ Ara

MONTREAL cMmcC

MICROSYSTEMS

* Ara (CV-VEC) is the codename for the vector
processor.

* Vectors and array processor can use SIMD
programming model to improve computation
throughput.

* Example of Array processors is x86 that
supports AVX instructions, or ARM with neon.

* The vector in an array processor are fixed in
size, as opposed to in vector processors
which can use dynamic length up to 4096-bit
operations.

* Ara can be configured with different numbers
of lanes allowing more parallelism based on
how wide the design is.

Vi OPENHW-

AXl Node

erter

ETH:irichY RISC-\/°

Data Width Conv

|

Ariane
RV64GC

Instr L: Ack
Queue —_i_ Scalar

Ara
Rve64V

. CORE-\V° *

459 POLYTECHNIQUE
m- - MONTREAL

What is Polara ?

CORE-V Polara

Off-Chip NoC
Tile 1 4 Tile2
CVAG6 CVA6
+ L2 L2 +
ARA ARA
. P-Mesh P-Mesh
L1.5 " | Routers Routers L1.5
A A
JTAG
+ |4
PLIC " Tile 3 Tile 4
v v
. P-Mesh P-Mesh
L1.5 "~ | Routers Routers | L1.5
CVAG6 CVA6
+ L2 L2 +
ARA ARA
GROUP
 OPENHW?®

b RISC

Polara is aiming to create a multi-
core version of the ARA vectorial
processor using the OpenPiton
framework

The ASIC will posses 4 instances or
ARA/CVVEC with 4 lanes each

CORE-V° °

SSSSSSSSSSSS

s @ e VEEmc SIMD recap ETH zirich Y, RISC-\/*

* SIMD allows multiple operation with a
single instruction.

* This type of parallelism is called data-
level parallelism (DLP).

e DLP allows for better hardware
utilization

 Vector processor and array processor
are both different implementation of
SIMD computation model

D Instructions |:| Data |:| Result

GGGGG

& CORE-v® °

POLYTECHNIQUEC/N’?; Dee

- MONTREAL

p learning use EmMziricht RISC

MICROSYSTEMS

Al workload can be divided into training and inference.

Deep learning model usually use BLAS (basic linear algebra subprograms) libraries

BLAS are set of programming routines that are commonly used in learn algebra operations

Neural networks commonly use AXPY
y=Xx+Yy

where x and y are vectors

e MATMUL is a second level BLAS and defined as
C =AB+C

where C, A, and B are matrices

il OPENHW:®

|, OPENHW:

SSSSSSSSSSS

1. Extending Ara to support low precision instruction and sub-byte computations.

This would help with low precision Quantized neural networks and Binary
neural networks

Build an FPGA model of the chip for verification

3. Build a custom chip from Ara + Ariane + extension design on
GLOBALFOUNDERIES 22FDX 22 nm technology with the help of CMC

4. Build software stack and runtime to run on neural networks on the fabricated
chip

GGGGG

CORE-V"

8

POLYTECHNIQUE/ ' SUB-BYTE COMPUTATIONS METHODS) RISC-\/
MONTREAL 4

R

MICROSYSTEMS

Introduces software/hardware techniques to compute sub-byte dot product more efficiently

BIT-SERIAL [1] ULPPACK [2]

Computation done between corresponding bits of operands Vectorizes the computation using scalar instructions
in a serial manner
N M 8-bit register Wider register can be used according to desired
1 #operands / precision
— n+m
w-a = 2 2 popent(wWy, & a,,) ” Vo Wy & a i
n=0 m=0

I 2 weights, 2 activations, 2-bit precision I

v

Wpa, +W;ay w; 3, MUL

Dot product results
on high 4-bit

Where N, M are respectively activation
precision and weight precision l

Woa, + W, a AND
At minimum, requires the implementation A
(SW or HW) of popcnt instruction (non- 1
existing in RISC-V « V » ISA)

Can be fused in

Dot product just a I..SR (Logical
between vectors Woa +W;3a,| LSR Shift Righ)

w and a

[1] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, ‘Automatic generation of high-performance quantized machine
; GROUP learning kernels’, 02 2020, pp. 305-316.
O pE N H W® [2] J. Won, J. Si, S. Son, T. J. Ham, and J. W. Lee, ‘ULPPACK: Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware’,
T PROVENEROEESSOR IR in Proceedings of Machine Learning and Systems, 2022, vol. 4, pp. 52-63.

» CORE-V*

= MONTREAL

= g,
&
§
=

MICROSYSTEMS

\ POLYTECHNIQUE /4 SUB-BYTE COMPUTATIONS METHODS ») 5

Introduces software/hardware techniques to compute sub-byte dot product more efficiently

BIT-SERIAL [1]

Computation done between corresponding bits of operands
in a serial manner

Bit-serial complexity is O(N x M)
Suitable for very small precision
(typ. 1-bit to 2-bit)

Requires modification on the HW

Exemple from [2] comparing both methods
Bit-serial performance decreases rapidely
whereas ULPPACK yields great
performance from W2A2 to W4A4

02 2020, pp. 305-316.

ULPPACK [2]

Vectorizes the computation using scalar instructions

More versatile (up to 4-bit precision)
Efficient in SW on small precision (ho HW added)

2]
o

J

w
o
Il

N
(4)]
L

Performance (GOPS)
o S

.
o

()]

0

GR
®
Op EN HW [2] J. Won, J. Si,S. Son, T.J. Ham, and J. W. Lee, ‘ULPPACK: Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware’, in Proceedings of
- Machine Learnina and Svstems. 2022. vol. 4. pp. 52—63.

54.8 OGEMMLOWP
) -~ o QNNPACK
@ Bit-serial
mULPPACK
W1A1 W2A2 W3A3 W4A4 W5A5

[1] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, ‘Automatic generation of high-performance quantized machine learning kernels’,

®

CORE-V*

{®) POLYTECHNIQUE /CMC' RISC-V VECTOR PROCESSOR:) RISC\!
’ PARALLELIZATION OF COMPUTATIONS

Bl 4 |ane ara micro-architecture

Seams. 7

% POLYTECHNIQUE SEVERAL ARCHITECTURES AIMING TOWARDS SUB-BYTE RISC
MONTREAL COMPUTATIONS { /|

RN

Work in Progress

Quark [3] Sparq [4] Sparqg v2

Higne = 0.370 mm

MUL / DIV

Waraygne = 0-415 mm Wouark,gne = 0-181 MM Wsparq, .., = 0.278 mm Wsparqrz, . = 0415 mm
Area of _ 2 — 2 2 2
one lane SATaLane = (Ohller o SQuarkLane = 0.067mm SSpaTQLane = 0.103mm SSpark}fozme = 0.154mm
e . i Bit-serial dedicated ULPPACK dedicated ULPPACK dedicated
Specifications Vanilla RISC-V «V » Hardware Hardware Hardware (barrel-shifter)
(No FPU, MUL/DIV) (No FPU) (No FPU)

[1] M. AskariHemmat, T. Dupuis, Y. Fournier, N. E. Zarif, M. Cavalcante, M. Perotti, F. Gurkaynak, L. Benini, F. Leduc-Primeau, Y. Savaria, and J.-P. David, “Quark: An integer risc-v vector processor for sub-byte

quantized dnn inference,” 2023. [Online]. Available: https://arxiv.org/abs/2302.05996
[2] T.Dupuis, Y. Fournier, M. AskariHemmat, N. E. Zarif, F. Leduc-Primeau, J. P. David, and Y. Savaria, “Sparq: A custom risc-v vector processor for efficient sub-byte quantized inference,” 2023, Unpublished.

®

{7#s POLYTECHNIQUE SEVERAL ARCHITECTURES AIMING

== MONTREAL TOWARDS SUB-BYTE COMPUTATIONS
[Ara Ara Quark Sparq
I FP32 I ULPPACK BIT-SERIAL ULPPACK
12.33 I (Software (HW acc.) (HW acc.)

| operations/cycle only)

s s =

Performance of 2D convolution (3x3 kernel over 64x128x128 input)

W1A1 43.32 (x3.51) 51.67 () 48.84 (x3.96)
W2A2 34.40 (x2.78) 30.80 (x2.50) 37.96 ()
W3A3 27.57 (x2.23) N/A 37.96 ()

T

performance of
Simulated using RTL simulation (4 lanes configuration) W2A2 = W3A3

Results are in operations per cycle

b RISC-V°

Sparqg v2

ULPPACK
(HW acc.)

nontrear ECORE-V Polara Architecture

b RISC-V°

Off-Chip NoC
Tile 1 4 Tile2
X 2 2 N Polara is aiming to create a multi-
N T core version of the ARA vectorial
s . PMesh PMesh . Lie processor using the OpenPiton
. " | Routers Routers | :
. N framework
JTi\G
PLIC f Tile 3 Tile 4) .
¥ ¥ The ASIC will posses 4 instances or
15 < PMesh Paesh |4 ARA/CVVEC with 4 lanes each
7| N
CVAG6 CVA6
AI;A 2 - AI;A
w OPENHW® CORE-V Polara CORE-\V® 4

%5, POLYTECHNIQUE /’ o

- MONTREAL

TMC

MICROSYSTEMS

OpenPiton Integration

To L1.5
£
1
Accelerator
Interface
Ara CVAB
a%i eq
axi_dw_convert
A
_litllnucm q

axi_to_axi lite

A

A

Tile
CVA6
L2 &
ARA
A / A
\J g \i
P-Mesh
Routers i e
P ;EE‘ EROUB
i OPENHW®

axilite_noc_bridge

t:
| B

To P-Mesh

CORE-V Polara

b RISC

With help from UC Santa Barbara, a
Polara tile is integrated in OpenPiton
using an AXI to NOC bridge.

For the first stage of Integration,
initial RISC-V vector tests are used
for 1 tile configuration.

Next in our plan is to run these tests
in multi tile configuration.

CORE-V° ¥

MICROSYSTEMS

Synthesis and implementation
completed on Xilinx Alveo U280

et cue FPGA Emulation - Ara

b RISC

cki > i_ara_soc
LA % clie_i exit_o[63:0] .
Configuration: =Bl o | e ool D> et olsai0)
CLK scan_data_i uart_penable_o
- 4 Ia nes CTSN scan_enable_i uart_psel_o
DCDN | uart_prdata_i[31:0] uart_pwdata_o[31:0]
- 5 1 2 kB L2 Ca Ch e DSRN uart)ready_f uart_pwrite_o
PADDR[2:0] PRDATA[31:0] uart_pslverr_i
- Max achievable frequency: 75MH PeveLE et
PSEL PSLVERR
PWDATA[31:0] SOUT
PWRITE D teio
1 1 . RIN
Bitstream generation: oy
Adaptation of the board’s constraints ~i SN i
apb_uart

file to generate the bitstream

GRO!

.|y OPENHW:

ROVEN PROCESSOR IP

CORE-V*" *°

®

wneeal FPGA Emulation - Ara Emziricht; RISC-V

10 planning on Xilinx Alveo U280

64 bits for the exit signal

UART: RX and TX
Clock and Reset I

Adding the constraint file with the 10s
increased the WNS from +0.036ns to +0.238ns
at 75MHz

17

(@ rourrechniave 27 = FPGA Emulation b RISC

SSSSSSSSSSSS

* Next steps:

* Ara
Programming the FPGA board with Ara

Run basic tests on Ara

* OpenPiton

Write Fusesoc script for Polara emulation: synthesis, implementation,
generation of bitstream

Programming the FPGA board with 1 tile of Polara’s OpenPiton
Run tests on Polara

GROUP -SaEEEn

) OPENHW: & core-v- *

>
7,
p
®.
Q.
@
N
i @
=
-
i
0 p)
=
&
&
]
=1
&
o
-k
]
-
-
N

Table 1: CORE-V Polara specifications

Name CORE-V Polara
Technology GLOBALFOUNDRIES 22FDX FD-SOI
Package CPGA208
Target frequency! > 750 MHz
Power? <125 W
Width 3 mn
Height 3 man
Area 9 mm?
I/0s
Type Inputs Outputs Total
Power 112 0 112
VDDC 28 0 28
VDDIO 28 0 28
Vssc 28 0 28
VSSIO 28 0 28
Ott-Chip Interface (OCT) 46 39 85
Reset 1 0]
FLL & Clock 4 1 5
JTAG 4 1 5
Chip bridge (data) 37 37 74
Total 158 39 197
OPENHW"®

b RISC

* CORE-V Polara is aimed to be taped-
out this summer in GF22FDX

* We are aiming for a 3 x 3 mm die at
a > 750 MHz clock

CORE-V" ¥

2 D howreear ASIC design — Work left to do

CORE-V
Polara

* The Lanes and ARA macros are

v | ! tape-out ready
Tile x4 FLL
L | }] } {] * Currently finalising the OpenPiton
4 Tile macro
4 N\
ARA /
. CVVEE Y * Currently starting working on the
v Top-Level macro

GROUP -SaEEEn

b RISC

®

{75} POLYTECHNIQUE
2. MONTREAL

@ porreeaniave 2 ASIC design — Top Level Y Risc v

MICROSYSTEMS

Pad Ring
FLL Chip Bridge + peripherals...

e Starting to work on the Top Level

* Total of 4 Tiles with the chip bridge
and the OpenPiton peripherals

* FLL integration still left to do

GROUP -SaEEEn
gHH

OPEN H W didtiith CORE-V® 22

Violating Paths:
All Paths:

Violating Paths:
All Paths:

$o———— — ¢

+
I

+
|
!
!
I

+

 ———— — ¢

$ ————+ — +

@ wovrrear emc PnR timin

MICROSYSTEMS

o —_———— — 4

+ —_———— — +

* Timing results for the current
macros

* Clock @ 750 MHz
e Some small violations left to fix

* Violations can be fixed using ECO
on the critical paths

CORE-V"°

g results EmHziricht; RISCV

2 @ wovreear emc Tape-out plan EHziricnt RISC-V

ey
SEUSRG 5
e MUNTREAL e osvsTens

MPW2254 :

* Application deadline :

Cancelation date :

Export Control Date : 2023-07-19

Design Submission Deadline : 2023-07-19

Delivery Date : 2024-01-05

GGGGG

A OPENHW*® CORE-Vv" %

&) MontreaL EMC Al runtime ETHziricht; RISC-V/

SSSSSSSSSSSS

e Usually, To run Al workload on RISC V we need to have a full OS (like
Linux) build with support user level vector instructions.

* Or run the Al workload directly on Metal which presents it is own
challenges.

* While CVA6 does have an MMU (memory management unit), the Ara
vector processor doesn’t

* An MMU is necessary for address translation and virtual memory
(and running Linux)

* Thus, running RISCV vector code in an OS environment not possible.

GROUP -SaEEEn

L) OPENHW: & corev-

POLYTECHNIQUEC/IWf Al runtime ETH:irichY RISC-\/°

SSSSSSSSSSSS

* Solution:
* Build an Al runtime that works directly on baremetal

* Running baremetal Al not only would work without OS, but it also reduces
memory address translation that can result in fewer memory operations,
which reduces computation time and power

* The generic code structure that we build should support a wide array of
microcontrollers and processors

* Challenges:

* Only the basic functionality of C is supported, which means that there is no
support for standard C libraries, or even stuff like malloc and other dynamic
memory units.

OPEN i_fW@ CORE'V® 26

Y POLYTECHNIQUE — v
TMC

MONTREAL

MICROSYSTEMS

» Keras2c has two parts:

e Code gen: takes input
keras “.h5” network and
convert it to C code.
Written in python

* Library files: writtenin C
contain the supported
ML ops and different data
structures to run
generate C code

e Capable to run
baremetal environment
with little modification

* https://github.com/fOuri
est/keras2c

Keras2c

—

/ \
Generate a C code\

(from Keras .h5

A Network /
_ _—,

ETHziirichl ; RISC

Keras2c
Contains ML ops for

supported layers

/

(conv2d, dense)
written in C

'

'

Llnput Keras network

.,
J

Keras2c code gen

KerasZ2c library files

l

|

Hardcoded C code
network

— < NN binary

CORE-V" Y

wontrear remc Keras2ce workflow ETHziricn?, RISCV

MICROSYSTEMS

e Write a script to load keras model and generate 2 c files and 1 h file
* The three files are a model file, input generation file and header file

e Write a makefile to compile the three generated files with the library files
e The input file the labeled test_suite which contains generated input and calls the model files

e The model files contains the weights and biases of each layer along with the functions calls to the
library (conv2d, padding, dense, add, affine matrix,)

J
N

e Generate a binary using the makefiles, in cases of polara we need to modify linker scripts to generate
® Run the code (we can use verilator to run the code on a simulated hardware)

J

GROUP

i OPENHW®

PROVEN PROCESSOR IP

CORE-V"° %

wntrear emc Keras2c Riscy ETHziricnR RISC

SSSSSSSSSSS

* The generated binary can work in verilator which is a cycle accurate
emulator,

* It is producing the expected output which is the exact output if ran
natively on X86 linux, or Spike RISCV elf

simulation.

CORE-Vv" %

@ Donmeent Femc Polara-keras2ce | EmHzirich), RISCHV

SSSSSSSSSSS

* rewriting some of the function of Keras2c to work for baremetal with
custom implementation to work for baremetal (Memcpy, memset,
strlen, strnlen, strcmp, strcpy, printf...)

* Updated code generation to remove calls incompatible with Polara
baremetal environment

* Added support for some operations (conv2d, relu, add, dense,
padding) for safe fixed-point implementation

* The remaining layers are still implemented in floating point

* The library files can be replaced with an optimized implementation
(for example RISCV vector code)

GROUP -SaEEEn

L) OPENHW: & corev-

/%5, POLYTECHNIQUE

Jwonréar Preliminary result of inference i RISC

®

Energy required (Joules)

* 97% of cycles are spent executing
conv2d

RPi4

Ara 4 lanes (estimate)

* Optimizing for conv2d intel ECSSEEE

Intel P core (Joules)

* Implemented RVV int8 vector to
speedup the convolution, maxpool
and Relu

(0] 0.05 0.1

B Energy Scalar Energy vector

* Ara vector is close to IPC vector clociuetii
performance of 12t gen intel core
using AVX instructions at much
lower energy use (simulation)

GROUP

¥ OPENHW?®
—— PROVEN PROCESSOR 1P ——

Ara int8

&%LJJ.EEEI"“”%MC' Future work ETHzirich; RISC-\/*

SSSSSSSSSSSS

* Finish RTL for the sparq v2

* FPGA implementation for Polara

* Validation testing for Polara

* Fix minor timing issues with Polara

* Full stack implementation of polara-keras2c with proper scaling and
shifting factors for low-precision neural network

GROUP -SaEEEn

W OPENHW: &) corev' *

ey POLYTEcHNIQUEt/‘MC COnClllSiOn ETHzirichl RISC-\/°

i -
<~ MONTREAL
e MIVNIRERL s osvsTens

* Work on Multicore Ara is progressing nicely
* Chip is expected back in 2024
* High-performance and power efficiency using RISCV vector

GROUP -SaEEEn

1}y OPENHW: &) core-v- »

%5, POLYTECHNIQUE
~» MONTREAL

Thank you!

M RISC

34

®

