

CORE-V: Open Source RISC-V Cores for Industry & Academia

Rick O'Connor <u>rickoco@openhwgroup.org</u> T <u>@rickoco</u> T <u>@openhwgroup</u> <u>www.openhwgroup.org</u>

© OpenHW Group

May 2023

- OpenHW Group is a not-for-profit, global organization registered in Canada and Europe. The OpenHW ecosystem is driven by members (corporate & academic) and individual contributors where HW and SW designers collaborate in developing open-source cores, related IP, tools and SW such as the CORE-V Family of open-source RISC-V processors
 - International footprint with developers in North America, Europe and Asia
 - Providing an infrastructure for hosting high quality open-source HW developments in line with industry best practices
 - Strong support from industry, academia and individual contributors worldwide

Смс : CSem ETH zürich

ÉCOLE DE TECHNOLOG SUPÉRIEURE

ÉTS

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

Cez

Working Groups & Task Groups

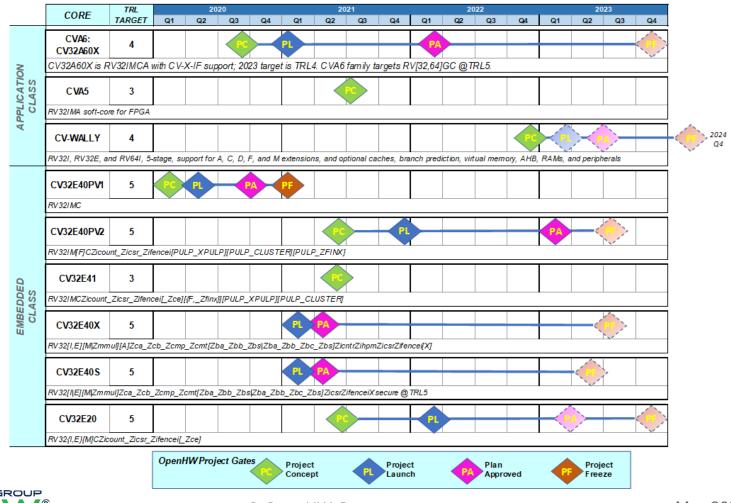
- Board of Directors approves elected Chairs of Working Groups and has final approval of working group recommendations
- Technical Working Group
 - Cores Task Group
 - Verification Task Group
 - SW Task Group
 - HW Task Group
- Marketing Working Group
 - University Outreach Task Group
- OpenHW Asia Working Group
- OpenHW Europe Working Group

- Together with internal OpenHW Group engineering staff, member company development engineers (FTEs / ACs) establish and execute <u>OpenHW Group projects</u>
 - 20+ active projects across CORE-V RTL, Verification, GCC / LLVM, IDE, RTOS, FPGA, SoC, etc. with more projects in the pipeline

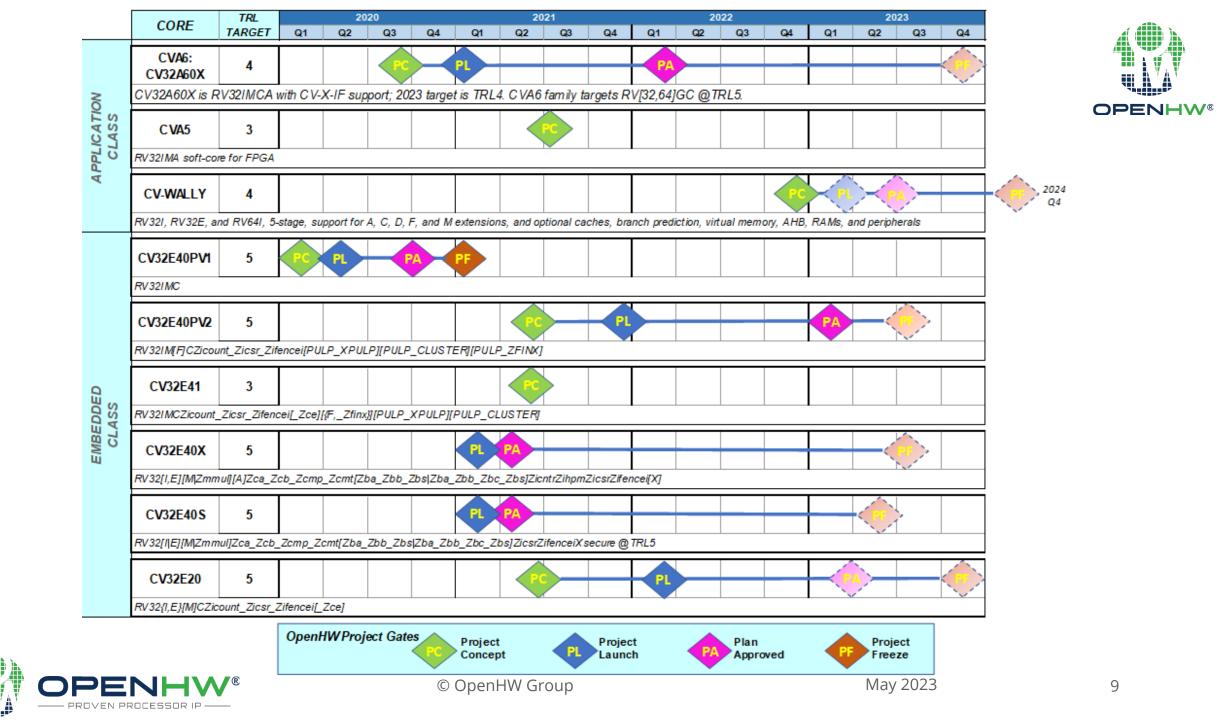
OpenHW Cores Task Group

- Chair: Arjan Bink, Silicon Laboratories
- Vice-Chair: Jérôme Quévremont, Thales Research & Technology THALES
- develop feature and functionality roadmap and the open-source IP for the cores within the OpenHW Group such as the CORE-V Family of open-source RISC-V processors.
- Initial contribution of open-source RISC-V cores from <u>ETH Zurich PULP Platform</u> and the OpenHW Group is the <u>official committer for these repositories</u> ETH zürich I and I a

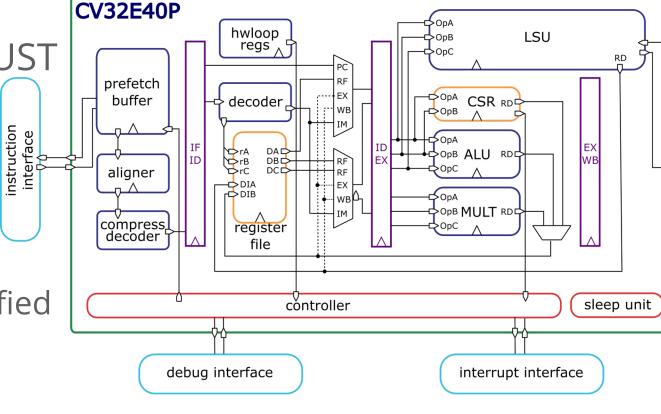
(RI5CY) 4-	32bit / 4-stage	A family of 4-stage cores that implement, RV32IMFCXpulp, optional 32-bit FPU, instruction set extensions for DSP operations including HW loops, SIMD extensions, bit manipulation and post-increment instructions.
CVA6 32 8		
	& 64bit / 6-stage	A family of 6-stage, single issue, in-order CPU cores implementing RV64GC extensions with three privilege levels M, S, U to fully support a Unix-like (Linux, BSD, etc.) operating system. The cores have configurable size, separate TLBs, a HW PTW and branch-prediction (branch target buffer, branch history table and a return address stack).



SILICON LABS



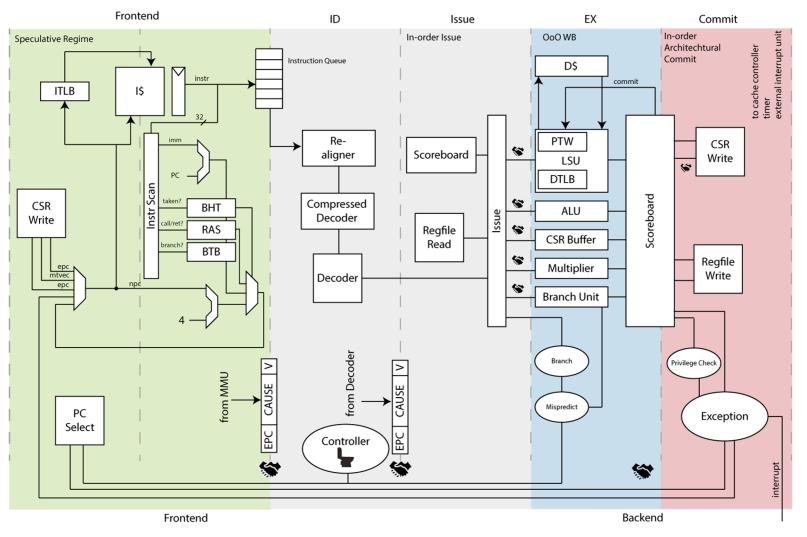
OpenHW GitHub https://github.com/openhwgroup



CVE4 Family CV32E40P

data interface

- 4-stage, in-order, singleissue
- RV32IM[F]CZicount_Zicsr_Zi fencei
 [PULP_XPULP][PULP_CLUST ER][PULP_ZFINX]
- M-mode, CLINT, OBI
- 'RTL Freeze' achieved
 - RV32IMC extensions verified
 - Interrupts and Debug


© OpenHW Group

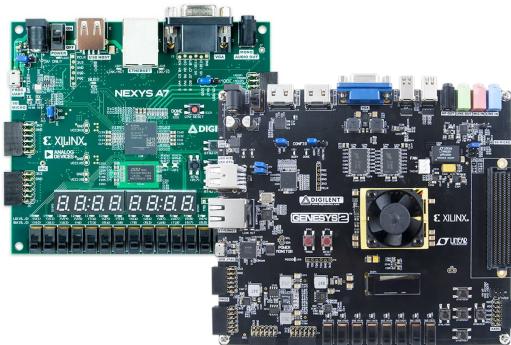
10

CVA6 Family

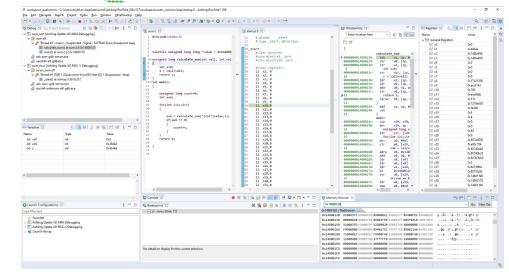
- 6-stage, in-order, single-issue
- RV{32|64}IMAC[FD] Zicsr
- M/S/U-mode, CLINT, AXI
- Flexible application core
 - Linux-compatible thanks to MMU
 - 32 or 64 bit (CV32A6, CV64A6) from same RTL (64b from ETH, 32b from Thales)
 - L1 caches

HW Task Group

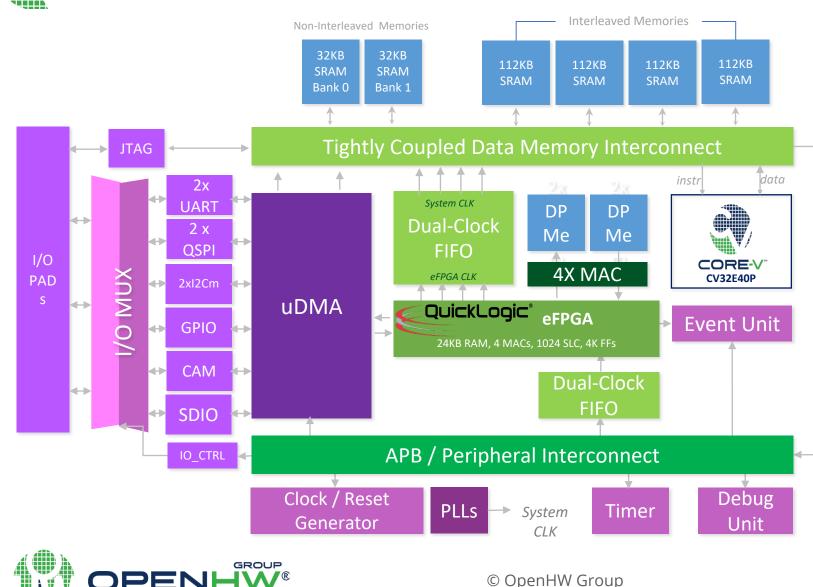
- Chair: Hugh Pollitt-Smith, CMC Microsystems
- Vice-Chair: Tim Saxe, QuickLogic
- define, develop and support SoC and FPGA based evaluation / development platforms for the cores and IP developed within the OpenHW Group.



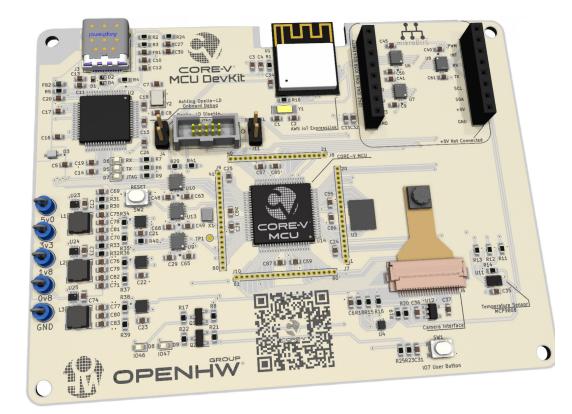
QuickLogic®



 CORE-V projects leverage Digilent NexysA7 & Genesys2 FPGA boards for soft-core bring up for both CVE4 and CVA6 Families



CORE-V® MCU Tapeout 1st half 2023


- Real Time Operating System (e.g. FreeRTOS) capable
 ~300+MHz CV32E4 MCU
- Embedded FPGA fabric with hardware accelerators from QuickLogic
- Multiple low power peripheral interfaces (SPI, GPIO, I2C, HyperRAM, CAMIF, etc) for interfacing with sensors, displays, and connectivity modules

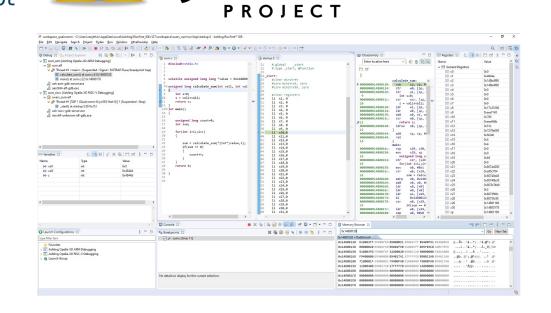
• Built in 22FDX with

May 2023

OpenHW CORE-V DevKits

- CORE-V MCU SoC
 - CV32E40P processor core
 - Quicklogic ArticPro eFPGA
 - Global Foundries 22FDX
- Ashling Opella-LD onboard JTAG debug module
- USB-C for terminal and onboard debug access
- JTAG connector for external debug access
- Espressif AWS IoT ExpressLink Module for AWS IoT cloud interconnect
- mikroBUS onboard socket, allowing access to a vast range of mikroBUS modules
- 40 pin expansion header
- I2C temperature sensor
- Early Access CORE-V MCU DevKits can be reserved on the <u>GroupGets campaign page</u> (quantities are limited)

CVA6 – software support



- OpenSBI
- U-boot
- Linux
- FreeRTOS
- Yocto
- RISC-V standard toolchain (gcc, gdb, openOCD)
- Eclipse IDE

 τo

U-Boot

CVA6 – dual core SMP Linux on Genesys2

		masgia@masgia-Inspiron-5579: ~	- 🗆 😣
Open Piton	<image/>	<pre>masgla@masgla-Inspiron-5579:- File Edit View Search Terminal Help L2.508437] fff8c2c080.uart: ttyS9 at MND 0xfff8c2c080 (irq = 1, base_baud = 4106087) is a 10550 (1.5.408457] fff8c2c080.uart: ttyS9 at MND 0xfff8c2c080 (irq = 1, base_baud = 4166687) is a 10550 (1.5.40857) prints: console [ttyS0] enabled (1.5.40857) prints: div1.0 Apr 26, 2019 (1.5.40857) prints: div1.0 Apr 26, 2019 (1.5.40857) prints: div1.0 Apr 26, 2019 (1.5.40857) prints: prints: div10n sd2 (1.6.20807) prints: prints: div10n sd2 (1.6.308381) libphy: Fixed MDIO Bus: probed (1.6.318435) libphy: Fixed MDIO Bus: probed (1.6.345813) libphy: Xilinx Emaclite MDIO: probed (1.6.345813) libphy: Xilinx Emaclite MDIO: probed (1.6.355367) Xilinx emaclite fff0d00000.ethernet: Device Tree Probing (1.6.355367) Xilinx emaclite fff0d00000.ethernet: MC address is now 00:18:3e:02:e3:e5 (1.6.355367) Xilinx emaclite fff0d00000.ethernet: Xilinx Emaclite at 0x(ptrval) mapped to 0x(ptr (1.6.45581) libphy: Xilinx Emaclite MDIO: probed (1.6.35537) Xilinx emaclite fff0d00000.ethernet: Xilinx Emaclite at 0x(ptrval) mapped to 0x(ptr (1.6.455841) libphy: Xilinx Emaclite MDIO: probed (1.6.345813) libphy: Xilinx Emaclite ff0d00000.ethernet: Xilinx Emaclite at 0x(ptrval) mapped to 0x(ptr (1.6.455841) libphy: Size 0 eFinanced' Host Controller (EHCI) Driver (1.6.455841) usbcroe: registered new interface driver usbhid (1.6.475812) NET: Registered protocol family 10 (1.6.475812) NET: Registered protocol family 10 (1.6.475812) NET: Registered protocol family 10 (1.6.476812) NET: Registered protocol family 10 (1.6.476812) NET: Registered protocol family 17 (1.6.561097) Key type dns_resolver registered (1</pre>	val2
		<pre>[18.860994] This architecture does not have kernel memory protection. [18.874036] Run /init as init process [18.874036] Run /init as init process Starting logging: OK Initializing random number generator [21.273658] random: dd: uninitialized urandom read (512 bytes read) [21.273658] random: dd: uninitialized urandom read (512 bytes read) done. Starting rpcbind: OK [22.539276] random: ssh-keygen: uninitialized urandom read (32 bytes read) [22.539276] random: ssh-keygen: uninitialized urandom read (32 bytes read) [22.539276] random: ssh-keygen: uninitialized urandom read (32 bytes read) [22.799293] random: ssh-keygen: uninitialized urandom read (32 bytes read) [22.799293] random: ssh-keygen: uninitialized urandom read (32 bytes read) [22.799293] random: ssh-keygen: uninitialized urandom read (32 bytes read) [C2.799293] random: ssh-keygen: uninitialized urandom read (32 bytes read) [C32.bytes read) [C32.bytes read] [C32.bytes read]</pre>	1
GROUP			

© OpenHW Group

CVA6 – 16 core cluster on Stratix10

		masgia@masgia-Inspiror	-5579: ~	_ 0 (
File Edit View Se	arch Terminal Help			
OpenHW CORE-V (
FPGA Board: Build Date:	s10gx Dec 12 2022 08:13:16			
#X-Tiles: #Y-Tiles: #Cores: Core Freq: Network: DRAM Size:	4 4 16 50 MHz 2dmesh config 1024 MB			
L1I Size / Assoc: L1D Size / Assoc: L15 Size / Assoc: L2 Size / Assoc:	8 kB / 4 8 kB / 4			
Hello from CVA6 II Hello from CVA6 II	01 02 03 04 05 06 06 07 08 09 10 11 12 12 13 14			
	115200 8N1 NOR Minico			

© OpenHW Group

OpenHW Accelerate 1st Project

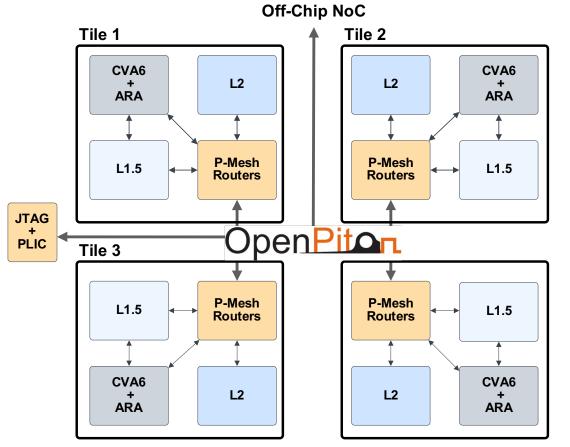
- 1st OpenHW Accelerate Co-Funded Project CORE-V CV-VEC: RISC-V Vector Processor for Highthroughput Multidimensional Sensor Data Processing & Machine Learning Acceleration at the Edge
 - Gord Harling, Hugh Politt-Smith, CMC (Industry Sponsor)
 - Frank Gürkaynak, Matheus Cavalcante, Matteo Perotti, ETH Zürich
 - Yvon Savaria, Nizar El Zarif, Hossein Askari Hemmat, Yoan Fournier, Elisabeth Humblet, Polytechnique Montréal
 - Jonathan Balkind, Ci-Chian Lu, UC Santa Barbara

ETH zürich

Mitacs

POLYTECHNIQUE

MONTRÉAL


WORLD-CLASS ENGINEERING

ETH zürich UC SANTA BARBARA

CORE-V Polara Quad core Architecture

- Adding latest CVVEC (Ara) with sub-byte computation support into OpenPiton.
- Adding latest CVA6 with accelerator interface support into OpenPiton.
- Developing OpenPiton to AXI interface to connect OpenPiton NOC to CVVEC.

ETH zürich UC SANTA BARBARA

CORE-V Polara ASIC design

Name			CORE-V Polara			
Technology	GLOBALFOUNDRIES 22FDX FD-SOI					
Package			CPGA208			
Target frequency ¹			$> 1 \mathrm{~GHz}$			
$Power^2$			< 1.25 W			
Width			- 3 mm			
Height			3 mm			
Area			9 mm^2			
I/Os						
\mathbf{Type}	Inputs	Outputs	Total			
Power	112	0	112			
VDDC	28	0	28			
VDDIO	28	0	28			
VSSC	28	0	28			
VSSIO	28	0	28			
Off-Chip Interface (OCI)	46	39	85			
Reset	1	0	1			
$FLL \ {\ensuremath{\mathfrak{E}}} \ Clock$	4	1	5			
JTAG	4	1	5			
Chip bridge (data)	37	37	74			
Total	158	39	197			

- CORE-V Polara tape-out planned for this year
 - GF22FDX
 - 3x3 mm die

• Quad core SoC with 4 instances of CVA6+CVVEC at 4 lanes each

- OpenHW Group & CORE-V Family of open-source RISC-V cores for use in high-volume production SoCs
 - Visit <u>www.openhwgroup.org</u> for community information
 - Visit OpenHW GitHub <u>https://github.com/openhwgroup</u> for projects
 - Learn more at <u>OpenHW TV</u>

• Follow us on Twitter <u>@openhwgroup</u> & <u>LinkedIn OpenHW Group</u>

