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Edge Intelligence

2

Data is curated and processed entirely on-device
• Cybersecurity and privacy are built in
• Quick adaptability to environment

Processing the data can be very fast – avoid the 
latency and power required to communicate with the 
cloud

W. J. Gross - McGill



Infe
ren

ceTra
inin

g

Our goal

W. J. Gross - McGill 3

training
(cloud)

inference
(edge)

Network

Energy-efficient 
edge intelligence

high-precision

Low-precision

pruning and 
quantization 
(binary / ternary)

Neural 
architecture 

search

New hardware 
architectures

(e.g. stochastic 
computing)

On-device 
learning 

(fine-tuning)

Heterogeneous 
architectures 
(CPU + GPU)

Model 
compression via 

distillation



Input 
𝑋

Weights 
𝑊

Matrix Multiplication
e.g., Convolution

(𝑋 ∗ 𝑊)

Normalization Layer
e.g. BatchNorm

Activation Layer
e.g., ReLU

Output/
Input to 
the next 

layer

Computationally very expensive:
Large amount of full-precision 

Multiplications

Computationally very cheap:
Few computations

• Quantize 𝑋,𝑊 with fewer bits
• Reduce the cost of computations by using integer multipliers



What is Quantization

High Precision Value
e.g., 16 or 32 bits ≈ Low Precision Value

e.g., 8 or 4 bits × High Precision Scale
e.g., 16 or 32 bits 

0.3649 4-bit: “0101” 0.066≈ × = 0.335

Perform heavy 
computations here

Scale the final result 
at the end

• Layer-by-layer quantization (same number of bits, but 
different scaling values)

• Each layer has a potentially unique quantization (scale). 
Rescale to higher precision in the the normalization layer.



Two approaches to quantization

Quantization
Q(.)

Optimization problem Minimize(x - Q(x))

Find the best 
quantization steps 

that fits the 
distribution with 

respect to the 
number of bits

Machine Learning 
problem Learn Q(x)

Find the 
quantization steps 
that produces the 
best task accuracy



Uniform (Linear) quantization

• All steps (quantization intervals) are equal
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Weights and Activation Distribution

• L2-norm gradient descent (weight decay factor) -> Gaussian-like distribution of weights
• Batch normalization -> Gaussian-like distribution of activations
• Huge portion of weights and activation values reside near zero

68%

95%

99%

𝜇 𝜇 + 𝜎 𝜇 + 2𝜎 𝜇 + 3𝜎𝜇 − 3𝜎 𝜇 − 2𝜎 𝜇 − 𝜎



Non-Uniform/Power of Two (POT) Quantization

POT quantization retains more 
information in this region 

POT 
Linear 

Linear quantization retains 
more information in this region 

Scale (linear)



Non-Uniform/Power of Two (POT) Quantization

POT quantization retains more 
information in this region 

POT 
Linear 

Linear quantization retains 
more information in this region 

Scale (POT)



Computations in Quantized Network During 
Training Phase

X

W

Quantizer

Quantizer

𝑋!

𝑊!

Matrix
Multiplication 𝑦! scaling 𝑦

Low Precision 
Computation, e.g., 4 bits High Precision 

Computation, e.g., 16 bits

High-precision inputs

Scaling 
factor

Scaling 
factor

Memory

High-precision weights

Quantized weights

Quantized input



Computations in Quantized Network During 
Inference

X
Quantize with steps 
learned in training 

(comparator)

𝑋!

𝑊!

Matrix
Multiplication 𝑦! scaling 𝑦

High-precision inputs

Scaling 
factor 

learned in 
training

Scaling 
factor 

learned in 
training

Memory

Quantized weights

Quantized input

Low Precision 
Computation, e.g., 4 bits

High Precision 
Computation, e.g., 16 bits

It can be 
merged with 
BatchNorm 

layer with no 
additional cost

Memory



Quantization (Training Phase)

Ø Normalize data so that abs 𝑥 ∈ 0,1 , with minimum value 0 and maximum value 1

Ø We	can	normalize	x	by	first	clipping	and	dividing	abs 𝑥 	by	a	parameter	 α 	:

clip(abs 𝑥 , 0, α)
α

Ø Find α by solving the optimization problem --> min
"
(𝑄 𝑥 − 𝑥)# where 𝑄 𝑥  is the quantizer function 

or

Ø Find α by gradient descent and backpropagation --> min	𝐿
",%

( J𝑦, 𝑦)# where J𝑦 is the network output and 𝑦 is the ground 

truth 



Parameterized Clipping Threshold (PACT1)

Goal: Learn the quantization steps

Parameterized Clipping Function:

𝜶

• Problem: Single parameter alpha for the entire layer – all the gradients 
coming to the layer are summed –> large value for updating alpha –> alpha 
grows quickly to a large value or vanishes

• Condition for good convergence: ratio of average gradient magnitude ≈ 
average parameter magnitude2

• We must scale the gradient for 𝜶
• Divide it by #features, #weights or a constant value

[1] J. Choi et al.,  Pact: Parameterized clipping activation for quantized neural networks, arXiv preprint arXiv:1805.06085 (2018). 
[2] Y. You et al., Large batch training of convolutional networks, arXiv preprint arXiv:1708.03888 (2017).

𝜕𝐿
𝜕𝛼 = P

𝜕𝐿
𝜕𝑥!

, 	 𝑥 > 𝛼

0, 	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Backpropagation:

𝑦 𝑥 = Z
0,
𝑥,
𝛼,

𝑥 ∈ (−∞, 0)
𝑥 ∈ [0, 𝛼)
𝑥 ∈ [𝛼, +∞)
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Our Approach

𝜶𝝈

𝜶𝝈 = 𝟑

𝑞 = 3
(2 bits)

𝜕𝐿
𝜕𝛼 = &

𝜕𝐿
𝜕𝑦
×
𝜕𝑄(𝑥)
𝜕𝛼

=
𝜕𝐿
𝜕𝑦
×𝝈, 	 𝑎𝑏𝑠 𝑥 > 𝜶𝝈

0, 	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜕𝐿
𝜕𝛼

= 𝑠
𝜕𝐿
𝜕𝑦
σ + λ𝛼

𝑠: constant gradient scaling factor
λ: decay factor

𝑦 𝑥 = ?
0,
𝑥,
𝛼𝜎,

𝑥 ∈ (−∞, 0)
𝑥 ∈ [0, 𝛼𝜎)
𝑥 ∈ [𝛼𝜎,+∞)

Intuition:
• Give a meaning to alpha: how many STD from mean to keep
• Linking the two methods: give the optimizer knowledge of the 

distribution

A. Ardakani, et al. "Standard Deviation-Based Quantization for Deep Neural Networks." arXiv preprint arXiv:2202.12422 (2022)



Results on CIFAR10 – Linear Quantization
ResNet-20 and Small-VGG Architectures

ResNet-20 – FP (32-bit float) Accuracy = 91.8% Small-VGG - FP Accuracy = 93.6%

DSQ: R. Gong et al. (ICCV 2019), LQ-Net: D. Zhang et al. (ECCV 2018), PACT: J. Choi et al. (arXiv preprint 2018)
HWGQ: Z. Cai et al. (CVPR 2017), LLSQ: X. Zhao et al. (ICLR 2020), RQST: C. Louizos et al. (arXiv preprint 2018) 
DoReFa: S. Zhou et al. (arXiv preprint 2016) 



Results on ImageNet - Linear Quantization

*LSQ method uses Pre-Activation variant of ResNet which has a higher performance than 
the original architecture.

Method Top-1 Accuracy @Precision
FP 4 3

Ours 73.3 73.5 (+0.2) 73.2 (-0.1)
LSQ* 74.1 74.1 (0) 73.4 (-0.7)
QIL 73.7 73.7 (0) 73.1 (-0.6)

ResNet-34 AlexNet – FP Accuracy = 61.8 



Pruning VS. Clipping Point

Ø Pruning ratio can be adjusted by varying gradient scale (S)
Ø We can achieve 18% more pruning ratio at the cost of 1.12% accuracy loss

3-bit Quantized ResNet-18



Log_2 (Power of Two) Quantization

[Deepshift] M. Elhoushi et al., “Deepshift: Towards multiplication-less neural networks.” In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2021
[INQ] A. Zhou et al., “Incremental network quantization: Towards lossless cnns with low-precision weights.” arXiv preprint, 2017
[𝑺𝟑] X. Li et al., ”𝑆"	: Sign-sparse-shift reparametrization for effective training of low-bit shift networks.” Advances in Neural 
Information Processing Systems, 34, 2021

Compared to S3: 4x less memory during training
10x faster convergence
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• Proposed new quantization method that takes advantage of 
the knowledge of weights and activation distributions 
(stddev)
• The proposed method outperforms prior art in various 

image classification tasks
• The non-uniform base-2 logarithmic quantization method 

converges 10x faster than the SOTA
• Flexibility to trade-off accuracy and network size by 

controlling the pruning ratio
• Future work: apply this method to transformers

Conclusion


