

Standard Deviation-Based Quantization for Deep Neural Networks

CMC Accelerating AI Workshop

Warren J. Gross

McGill University

May 4, 2023

Edge Intelligence

Data is curated and processed entirely on-device

- Cybersecurity and privacy are built in
- Quick adaptability to environment

Processing the data can be very fast – avoid the latency and power required to communicate with the cloud

BOSCH

Our goal

- Quantize *X*, *W* with fewer bits
- Reduce the cost of computations by using integer multipliers

What is Quantization

- Layer-by-layer quantization (same number of bits, but different scaling values)
- Each layer has a potentially unique quantization (scale). Rescale to higher precision in the the normalization layer.

Uniform (Linear) quantization

• All steps (quantization intervals) are equal

Weights and Activation Distribution

- L2-norm gradient descent (weight decay factor) -> Gaussian-like distribution of weights
- Batch normalization -> Gaussian-like distribution of activations
- Huge portion of weights and activation values reside near zero

Non-Uniform/Power of Two (POT) Quantization

Non-Uniform/Power of Two (POT) Quantization

Computations in Quantized Network During Training Phase

High-precision weights

Computations in Quantized Network During Inference

Quantization (Training Phase)

- ▶ Normalize data so that $abs(x) \in [0,1]$, with minimum value 0 and maximum value 1
- We can normalize x by first *clipping* and dividing abs(x) by a parameter (α) :

 $\frac{\operatorname{clip}(\operatorname{abs}(x), 0, \alpha)}{\alpha}$

Find α by solving the optimization problem --> $\min_{\alpha}(Q(x) - x)^2$ where Q(x) is the quantizer function

- or
- Find α by gradient descent and backpropagation --> $\min_{\alpha,w} L(\hat{y}, y)^2$ where \hat{y} is the network output and y is the ground truth

Parameterized Clipping Threshold (PACT¹)

Goal: Learn the quantization steps

Parameterized Clipping Function: $y(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$

Backpropagation:

$$\frac{\partial L}{\partial \alpha} = \begin{cases} \frac{\partial L}{\partial x_q}, & x > \alpha \\ 0, & otherwise \end{cases}$$

- Problem: Single parameter alpha for the entire layer all the gradients coming to the layer are summed –> large value for updating alpha –> alpha grows quickly to a large value or vanishes
- Condition for good convergence: ratio of average gradient magnitude ≈ average parameter magnitude²
- We must scale the gradient for α
 - Divide it by #features, #weights or a constant value

[1] J. Choi et al., Pact: Parameterized clipping activation for quantized neural networks, arXiv preprint arXiv:1805.06085 (2018).
[2] Y. You et al., Large batch training of convolutional networks, arXiv preprint arXiv:1708.03888 (2017).

Our Approach

Intuition:

- Give a meaning to alpha: how many STD from mean to keep
- Linking the two methods: give the optimizer knowledge of the distribution

$$y(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in [0, \alpha\sigma) \\ \alpha\sigma, & x \in [\alpha\sigma, +\infty) \end{cases}$$
$$\frac{\partial L}{\partial \alpha} = \begin{cases} \frac{\partial L}{\partial y} \times \frac{\partial Q(x)}{\partial \alpha} = \frac{\partial L}{\partial y} \times \sigma, & abs(x) > \alpha\sigma \\ 0, & otherwise \end{cases}$$
$$\frac{\partial L}{\partial \alpha} = s \frac{\partial L}{\partial y} \sigma + \lambda\alpha$$
$$s: \text{ constant gradient scaling factor} \\ \lambda: \text{ decay factor} \end{cases}$$

A. Ardakani, et al. "Standard Deviation-Based Quantization for Deep Neural Networks." arXiv preprint arXiv:2202.12422 (2022)

Results on CIFAR10 – Linear Quantization ResNet-20 and Small-VGG Architectures

ResNet-20 – FP ((32-bit float)) Accuracy =	91.8%
------------------	----------------	--------------	-------

Quantization method		Accuracy @ precision (A and W)			
Activations	Weights	5	4	3	2
DSQ LQ-Net	DSQ LQ-Net	_	-	_ 91.6	90.11 90.2
PACT	DoReFa	91.7	91.3	91.1	89.7
Ours	DoReFa	92.03	92.00	91.65	90.32
Ours	Ours	92.27	92.28	92.23	90.77

Small-VGG - FP Accuracy = 93.6%

Method	All lavers	Accuracy @ precision (A/W)			
	j	2/1	2/2		
LQ-Net	No	93.40	93.50		
HWGQ	No	92.51	NA		
LLSQ	No	NA	93.31		
Ours	No	93.88	94.36		
RQST	Yes	NA	90.92		
LLSQ	Yes	NA	93.12		
Ours	Yes	NA	93.90		

DSQ: R. Gong et al. (ICCV 2019), LQ-Net: D. Zhang et al. (ECCV 2018), PACT: J. Choi et al. (arXiv preprint 2018) HWGQ: Z. Cai et al. (CVPR 2017), LLSQ: X. Zhao et al. (ICLR 2020), RQST: C. Louizos et al. (arXiv preprint 2018) DoReFa: S. Zhou et al. (arXiv preprint 2016)

Results on ImageNet - Linear Quantization

	Re	esNet-34			AlexNe	et – FP /	Accuracy = 61.8
Method Top-1 Accuracy @Precision		Method	Top-1 accuracy @ precision (A and W)				
	FP	4	3		4	3	2
Ours	73.3	73.5 (+0.2)	73.2 (-0.1)	Ours	62.5	62.2	59.2
LSQ*	74.1	74.1 (0)	73.4 (-0.7)	QIL LO-Net	62	61.3	58.1 57.4
QIL	73.7	73.7 (0)	73.1 (-0.6)	TSQ	_	-	58

*LSQ method uses Pre-Activation variant of ResNet which has a higher performance than the original architecture.

Pruning VS. Clipping Point

- Pruning ratio can be adjusted by varying gradient scale (S)
- We can achieve 18% more pruning ratio at the cost of 1.12% accuracy loss

3-bit Quantized ResNet-18						
Gradient scale	1	0.1	0.01	0.001		
Top-1 Acc. (%) Pruning ratio (%)	68.92 40.21	69.59 29.74	69.70 24.97	70.04 21.57		

Log_2 (Power of Two) Quantization

Compared to S³: 4x less memory during training 10x faster convergence

Results on ImageNet				
Model	Method	Width	Top-1/Top-5 Acc. (%)	
	FP	32	69.76/89.08	
ResNet-18	DeepShift	5	69.56/89.17	
	INQ	3	68.08/88.36	
	S^3	3	69.82/89.23	
	Ours	3	70.23/89.33	
	FP	32	76.13/92.86	
ResNet-50	INQ	5	74.81/92.45	
	DeepShift	5	76.33/93.05	
	S^3	3	75.75/92.80	
	Ours	3	76.37/93.08	

[Deepshift] M. Elhoushi et al., "Deepshift: Towards multiplication-less neural networks." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021

[INQ] A. Zhou et al., "Incremental network quantization: Towards lossless cnns with low-precision weights." *arXiv preprint*, 2017 **[S³]** X. Li et al., "S³ : Sign-sparse-shift reparametrization for effective training of low-bit shift networks." Advances in Neural Information Processing Systems, 34, 2021

Conclusion

- Proposed new quantization method that takes advantage of the knowledge of weights and activation distributions (stddev)
- The proposed method outperforms prior art in various image classification tasks
- The non-uniform base-2 logarithmic quantization method converges 10x faster than the SOTA
- Flexibility to trade-off accuracy and network size by controlling the pruning ratio
- Future work: apply this method to transformers