Workshop

Accelerating AI 2023 – Challenges and Opportunities in Cloud and Edge Computing

May 4th, 2023 (1pm-5pm EDT)

Virtual

Host: Yassine Hariri Senior Staff Scientist – AI/ML CMC Microsystems

Accelerating AI 2023 – Challenges and Opportunities in Cloud and Edge Computing

Goal: Bring together experts from industry and academia to:

- Share the lasted trends and innovations
- Identify challenges and opportunities
- Explore collaboration opportunities
- Identify common infrastructure requirements

Topics of Accelerating AI 2023

- ML applications: Computer Vision, NLP, EDA and CAD...
- Novel AI HW: GPUs, FPGAs and Custom Accelerators
- Software stack: libraries, compilers, and ML frameworks
- ML Benchmarking on Emerging Hardware
- AI Latest trends in chip design and commercialization.

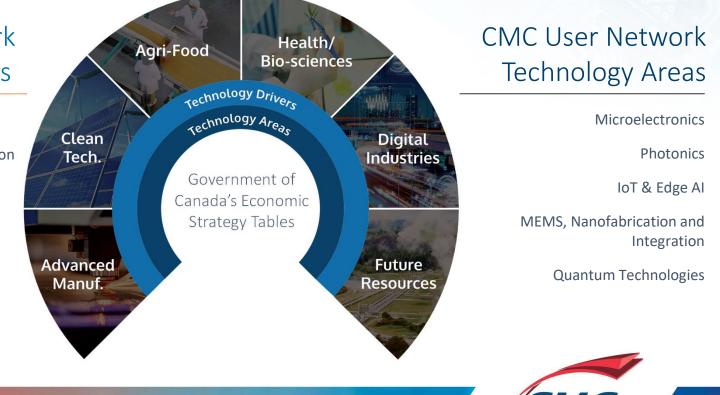
Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 - 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 - 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 - 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 - 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion	·		
4:30 PM	Closing			


CMC Microsystems

© 2019 and Reg. TM – CMC Microsystems

CMC Microsystems

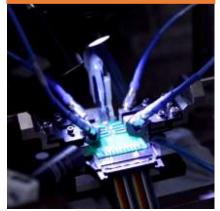
- CMC provides services to simplify access and reduce cost to advanced technologies:
 - Microelectronics
 - Photonics
 - IoT and Edge AI
 - MEMS, Nanofabrication and Integration
 - Quantum Technologies


- Academic and Industrial Support
 - Not-for-profit founded in 1984
 - Enabling innovation in a network involving more than 10,000 academic and industry participants.

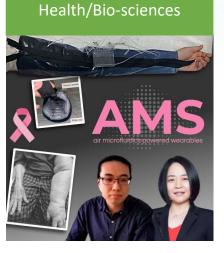
Fueling Innovation and Competitiveness Across Strategic Sectors

CMC User Network Technology Drivers

Pervasive Computing & AI Ultra-High Speed Communication Energy Management Biophotonics, Bioelectronics Industry 4.0


Advanced Technologies Across all Strategic Sectors

Clean Technology



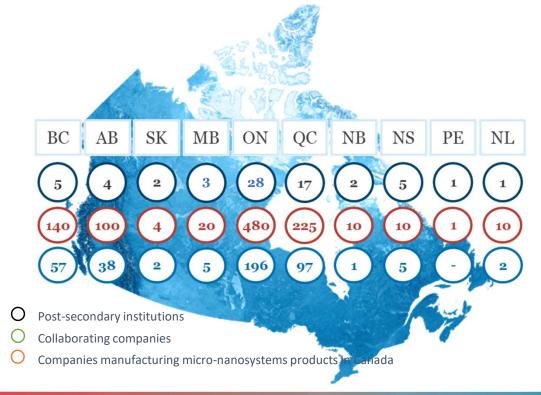
Simon Fraser University Dr. Byron Gates Dr. Michael Paul

Advanced Manufacturing & Digital Industries

Université Laval Dr. Leslie Rusch Dr. Wei Shi

University of Waterloo Mr. Run Ze Gao Dr. Carolyn Ren

A Quantum Leap in Cybersecurity


University of Ottawa Dr. Anne Broadbent

www.CMC.ca/SuccessStories

Accelerating innovation across Canada

A Canada-wide collaboration between 68 universities/colleges to connect 10,000 academic participants with 1,000 companies to design, make and test micro-nanosystem prototypes.

Enabling innovation and HQP skills development

- 1,370 connected professors
- 9,790 HQP benefitting
- **400** collaborations with industry
- 3,550 publications
- 125 awards
- 65 patents awarded
- 8 new startups
- 820 trained HQP moved to industry

State-of-the-art software for successful design

- Computer-Aided Design tools and design environments
- ♂ A secure, distributed private cloud for hosting
- ✓ User guides process design kits (PDKs), application notes, training materials, courses

FAB

Simple access and reduced cost for working prototypes

- ✓ Multi-Project Wafer (MPW) services through a global supply chain for
 - Microelectronics down to 12nm
 - Silicon photonics
 - MicroElectroMechanical Systems (MEMS)
 - Nanofabrication

 ${rac{ }{ \odot} }$ Expert assistance for first time right designs

✓ Packaging and assembly services

LAB Tools for test and demonstration

- ✓ Platform technologies to speed your research
- ✓ Test equipment loans for short term needs
- ✓ Technical contract services including quantum coding
- O Constructing research networks
- ${\it extsf{international partnerships}}$ for unique needs

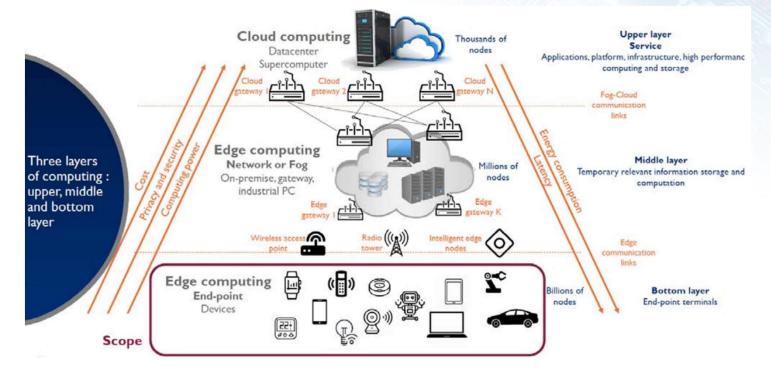
CMC's advanced technology supply chain

Over 100 alliances in 17 countries

FABRIC Building a first of its kind national ecosystem to create critically needed semiconductor capability in Canada <u>https://www.cmc.ca/fabric/</u>

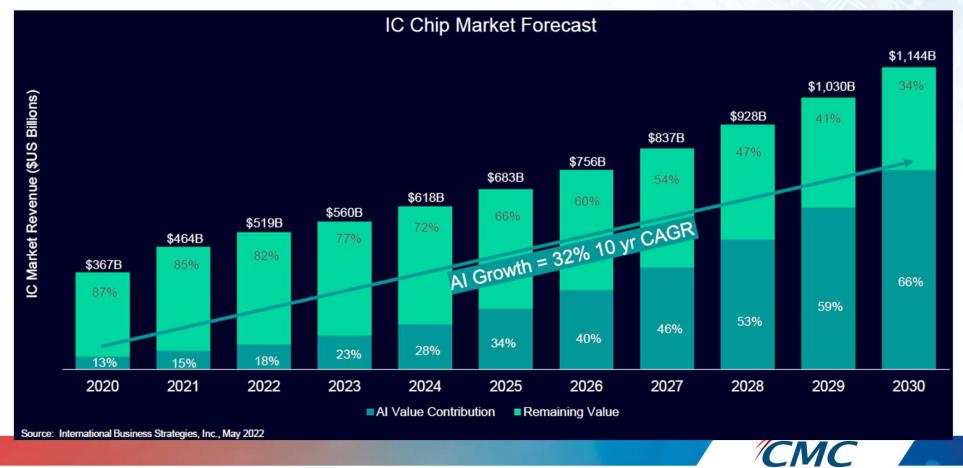
One project, five activities:

- 1. Create capacity for the fabrication of semiconductor devices in Canada
 - Manufacturers enhance or develop new processes (a new product/service)
- 2. Accelerate R&D of IoT products and services by SMEs operating in all verticals
 - Growth activities for both supply and demand of semiconductors
- 3. Develop skills needed by industry
 - HQP training and reskilling for Canada's tech industry
- 4. Take quantum technologies to market
 - Enabling SMEs to assess quantum technologies and accelerate their adoption
- 5. Grow Canada's semiconductor ecosystem
 - Leveraging each other's strengths, developing ecosystem IP, attracting investment

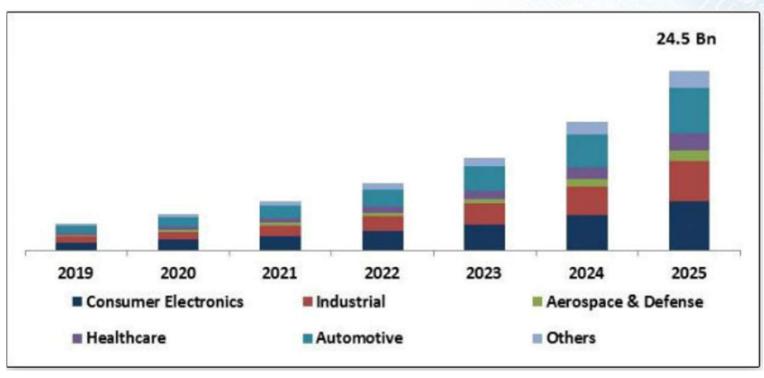

FABrIC Ecosystem in Canada - September 13, 2022

© 2019 and Reg. TM – CMC Microsystems

Focus on edge computing

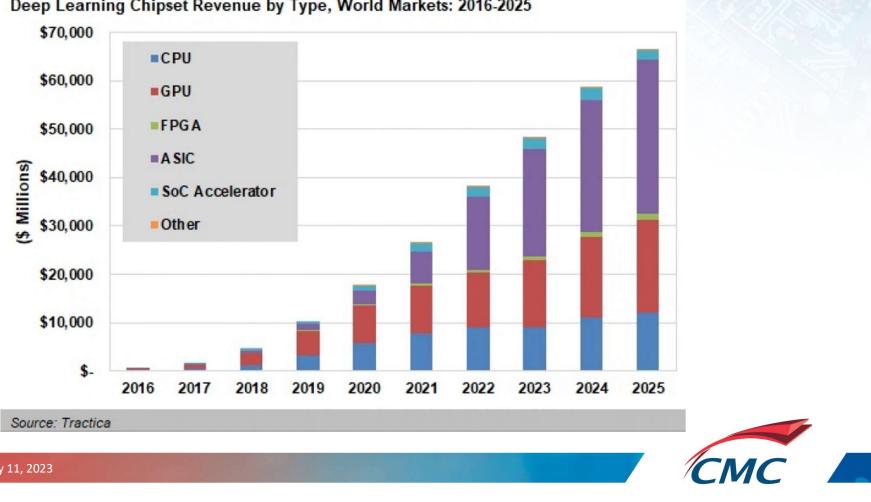


VICE FIGURE 10: Focus on Edge Computing

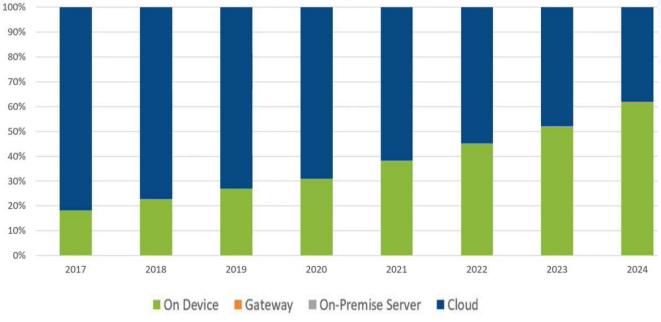

Source: Computing and AI technologies for mobile and consumer applications, Yole Développement | www.yole.fr | ©2021

СМС Д

Al Value contribution to IC Chip market forecast to Grow 32% through 2030


Al Chipset revenue by *market sector*

Source: kbv research



Al Chipset revenue by type

Deep Learning Chipset Revenue by Type, World Markets: 2016-2025

AI-Enabled Devices

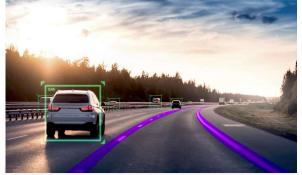
Percentage of AI-Enabled Devices

Source: ABI Research – AI and ML

Neural Network Market (Edge Devices)

Performance Requirements per Application are Increasing

• Facial detection

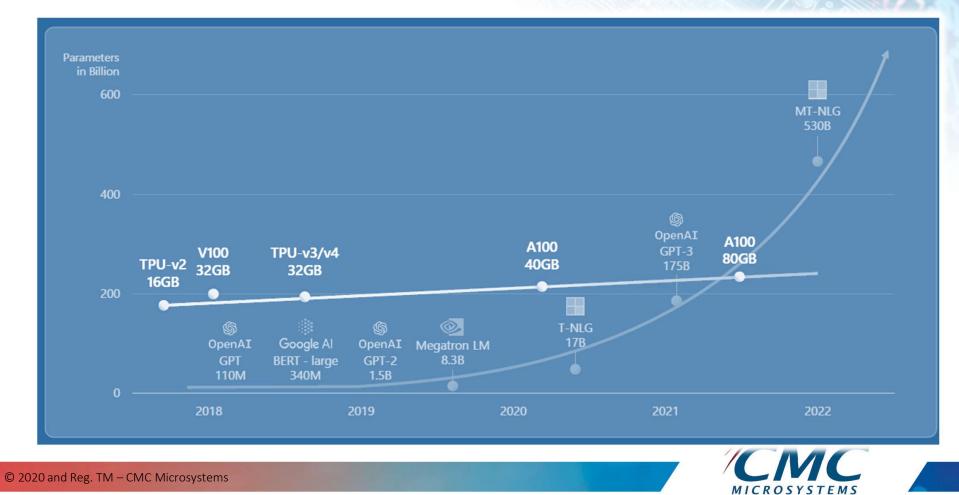

- Human activity recognition
- Always-on IoT / Smart Home
- Games/toys
- Voice control

<1 TOPS

- Augmented reality
- Surveillance
- Digital still cameras
- Facial recognition
- Automotive infotainment
- High-end smartphones
- Robotics / Drones
- Automotive RADAR / LiDAR

1 to 50 TOPS

- ADAS Vision/LiDAR/RADAR
- High end surveillance
- DTV
- High End Gaming
- Next gen augmented reality
- Microservers (inference)
- Data center (inference)


50 to 1000+ TOPS

Pierre Paulin, Synopsys, MPSoC 2022

Attributes of Edge Layers

Attribute	Cloud	CDN Edge	MEC Edge	Edge Gateway	Vehicle Edge	Smart Device
Attribute	ciouu	CDIVEUge	MEC Luge	Luge Gateway	Venicie Luge	Sindie Device
Latency to Sensor	100s of ms	10s of ms	10s of ms	1-5ms	100s of µs	10s of µs
Bandwidth to Sensor	10s of Mbps	100s of Mbps	~1Gbps	~1Gbps	10s of Gbps	10s of Gbps
Bandwidth to Cloud	100s of Gbps	10s of Gbps	~1Gbps	100s of Mbps	100s of Mbps	10s of Mbps
Available Energy	Megawatts	100s of KW	Killowatts	100s of Watts	100-10W	10-0.1W
Available Storage	Petabytes+	Petabytes	1-10 Terabytes	Terabytes	100s of GB	10s of GB
Security	Cloud	Cloud-like	Telco-like	Telco-like	Automotive?	Lightweight
Reliability / Resilience	Good	Good	Excellent	Good	Fair	Simplex
Scalability	Excellent	Very good	ОК	Limited	Very limited	Constrained
Data Gravity	Remote	Regional	Neighborhood	Local	Local	Colocated
Programming Environment	Rich&Familiar	Familiar	Specialized	Specialized	Constrained	Primitive
	A section of	The second			<i>СМС</i>	NAME


Data bound - > Compute bound

Edge Al Environment

Macro Scan	Risks/Uncert ainties	Challenges	Desired Figures of Merits FOM
 Compute intensive AI workloads are migrating to the edge: Lower latency, bandwidth saving, connectivity Data privacy and security, Autonomy and reliability Increasing demand for edge AI HW that balances performance, power, efficiency, and cost creating opportunities for: Domain specific GP neural processors unit Complex multi level memory hierarchy Massive multi level parallelism Highly efficient ML mapping tools Non-conventional architectures such as: Quantum computing Spiking neural processors (Neuromorphic computing) Analog computing 	Canada excels at Al software but risks lagging on innovative Edge Al Hardware and trained HQP	 Increasing complexity and continued innovation in AI algorithms High Computational Complexity Small Memory Footprint and DRAM bandwidth Low power consumption Need highly efficient ML mapping tools Trustworthiness: Safety, Security, resiliency, reliability and privacy 	 Smart Device 0.1W-10W 1-10 TOPS Vehicle Edge 10W-100W 10 to 50 TOPS Edge gateway 100s of Watts 50 to 1000+ TOPS We need to focus on meaningful FOM: Inference/sec/mm2 Inference/sec/W Bandwidth/infer
22			СМС

CMC Services in Artificial Intelligence: Platforms

Workshop Agenda

© 2019 and Reg. TM – CMC Microsystems

Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 - 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 - 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 - 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 - 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 – 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 - 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 – 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 – 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 – 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 – 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 – 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 - 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 - 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 – 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 - 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

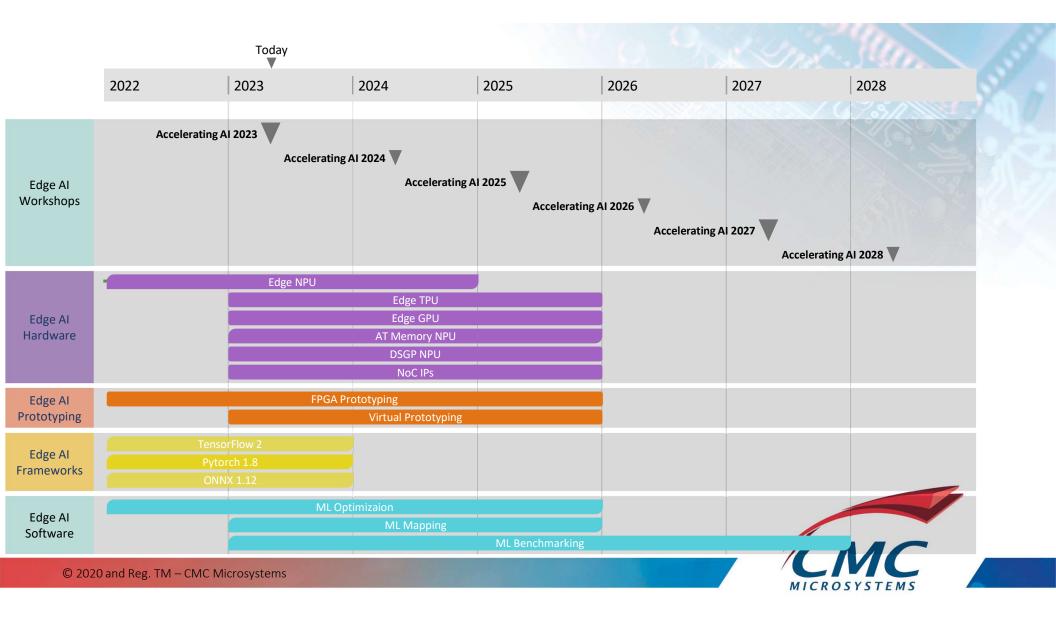
Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 – 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 – 2:40	Break			
2:40 – 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 – 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 – 4:30	Open Discussion			
4:30 PM	Closing			

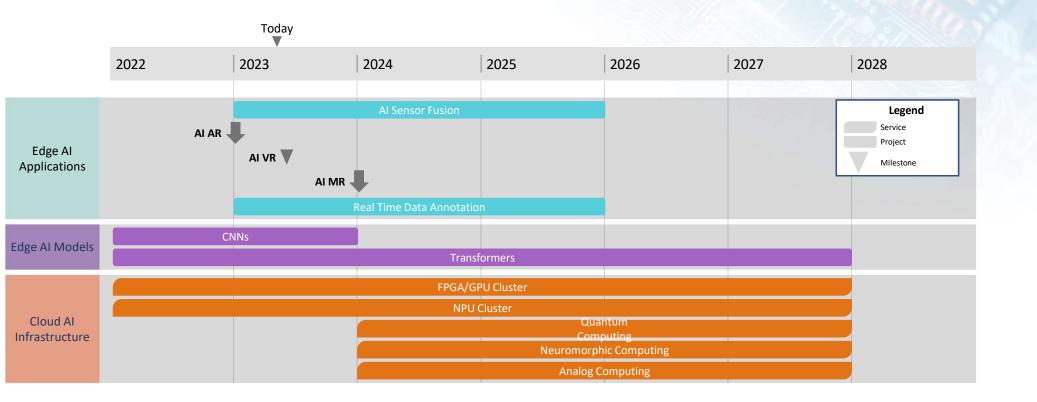
Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 – 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 - 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

Time	Presenter	Organization	Title	
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks	
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia	
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI	
1:50 - 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8	
2:10 - 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs	
2:30 – 2:40	Break			
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference	
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks	
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor	
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs	
4:00 - 4:30	Open Discussion			
4:30 PM	Closing			

Time	Presenter	Organization	Title		
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks		
1:10 – 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia		
1:30 – 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI		
1:50 – 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8		
2:10 – 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs		
2:30 – 2:40	Break				
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference		
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks		
3:20 – 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor		
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs		
4:00 - 4:30	Open Discussion	Open Discussion			
4:30 PM	Closing				

Time	Presenter	Organization	Title
1:00 - 1:10	Yassine Hariri	CMC Microsystems	Welcome and opening remarks
1:10 - 1:30	Rick O'Connor	OpenHW Group	CORE-V Cores: Open-Source RISC-V Cores for Industry & Academia
1:30 - 1:50	Gaurav Singh	Untether Al	Energy Efficient AI Inference Acceleration with Untether AI
1:50 - 2:10	Griffin Lacey	Nvidia	Accelerating Transformers with FP8
2:10 - 2:30	Davis Sawyer	Deeplite	Running 2bit Quantized CNNs on Arm CPUs
2:30 - 2:40	Break		
2:40 - 3:00	Andreas Moshovos	University of Toronto	Capitalizing on a Decade of Machine Learning Accelerators: SW/HW Assists for Training and Inference
3:00 - 3:20	Warren Gross	McGill University	Standard Deviation-Based Quantization for Deep Neural Networks
3:20 - 3:40	Nizar El Zarif	Polytechnique Montréal	Polara: a RISCV multicore vector processor
3:40 - 4:00	François Leduc- Primeau	Polytechnique Montréal	Designing Robust DNN Models That Exploit Energy-Reliability Tradeoffs
4:00 - 4:30	Open Discussion		
4:30 PM	Closing		




© 2019 and Reg. TM – CMC Microsystems

Panel Session: Challenges and Opportunities in Cloud and Edge Computing

What do you see as the most important challenges and opportunities in Cloud and Edge Computing?

CMC Services in Artificial Intelligence: Platforms Build Optimize Deploy Al Troining Al Optimization At interence LIDGE Deeplite FPGA. GPU CPU CORE 32- and 64-bit open-**FPGA/GPU CLUSTER** ATLAS 800 CLUSTER AI-DRIVEN OPTIMIZER source RISC-V cores PGA Vector scalar processor. Al Training Altraining Al Optimization FPGA/GPU Cluster On-chip eFPGA. Cerebro: 6 Alveo FPGAs 32 Ascend 910 Deep Neural Networks by Atias 800 Cluster Genisys: 6 VI00 GPUs. Barrel RISC-V 16 Kunpeng 920 making them faster, smaller Synergy: 2 GPU 2 FPGA 8 PFLOPS@FP16 and energy-efficient from Coming Soon HW emulation, CANN computing cloud to edge computing acceleration, validation architecture. Atias 200 DK AL FPGA Prototyping and SW stack allowing 32. **DeveloperKit** SW bring-up simultaneous users UNTETHER AL Custom Allacc. 2 PetoOps of Performance in a Single Card

